
Continual Machine Learning

Summer 2023

Teacher

Dr. Martin Mundt,

hessian.AI-DEPTH junior research group leader on Open World Lifelong Learning (OWLL)  

& researcher in the Artificial Intelligence and Machine Learning (AIML) group at TU Darmstadt

Time Course Homepage

Every Tuesday 17:30 - 19:00 CEST http://owll-lab.com/teaching/cl_lecture_23

https://www.youtube.com/playlist?list=PLm6QXeaB-XkA5-lVBB-h7XeYzFzgSh6sk

http://owll-lab.com/teaching/cl_lecture_23

Recall: lifelong ML

“Lifelong Machine Learning”, Chen & Liu, Morgan Claypool, 2017

Definition - Lifelong Machine Learning - Chen & Liu 2017:  
“Lifelong Machine Learning is a continuous learning process. At any time point, the learner
performed a sequence of N learning tasks, .These tasks can be of the same

type or different types and from the same domain or different domains. When faced with the
(N+1)th task (which is called the new or current task) with its data , the learner can

leverage past knowledge in the knowledge base (KB) to help learn .  

The objective of LML is usually to optimize the performance on the new task , but it can

optimize any task by treating the rest of the tasks as previous tasks. KB maintains the
knowledge learned and accumulated from learning the previous task. After the completion of
learning , KB is updated with the knowledge (e.g. intermediate as well as the final results)

gained from learning . The updating can involve inconsistency checking, reasoning, and

meta-mining of additional higher-level knowledge.”

𝒯1, 𝒯2, …, 𝒯N

𝒯N+1 DN+1

𝒯N+1

𝒯N+1

𝒯N+1

𝒯N+1

Recall: knowledge in NELL

“Towards an Architecture for Never-Ending Language Learning”, Carlson et al, AAAI 2010

“Never-Ending Learning”, T. Mitchell et al, AAAI 2015

Knowledge is a lot more than just parameters

• Ran 24/7 from 2010-2018

• Accumulated over 50 million candidate
“beliefs” by reading the web

• Relational database

• Facts: barley is a grain

• Beliefs: sportUsesEquip (soccer, balls) 

Recall: shifts & transfer

Figure from “Understanding Dataset Shift and Potential Remedies”,
Vector Institute Technical Report, 2021

“Discriminability-Based Transfer between Neural Networks”,
L. Y. Pratt, NeurIPS 1992

In transfer learning, if we equate knowledge with learned parameters, we will very likely
have some degree of forgetting of how to perform on the source task

Week 3: Optimization & Knowledge Retention

An intuitive example: K-means

Naive k-means (Lloyd’s algorithm)  

1. Initialization: randomly generate initial set of k means m_1, …, m_k

2. Assignment: Assign each observation to cluster with nearest mean

3. Update:

https://en.wikipedia.org/wiki/K-means_clustering , shared under Creative Commons license

https://en.wikipedia.org/wiki/K-means_clustering

Abrupt & gradual forgetting

https://en.wikipedia.org/wiki/File:K-means_convergence.gif 
Shared under Creative Commons license

When will it be surprising to see that we forget if
we add new data?

https://en.wikipedia.org/wiki/File:K-means_convergence.gif

Abrupt & gradual forgetting

When will it be surprising to see that we forget if
we add new data?

• Number of clusters?

• Data isn’t accumulated but replaced, mean
changes abruptly

• Considerations such as exponentially moving
average of the mean?

https://en.wikipedia.org/wiki/File:K-means_convergence.gif 
Shared under Creative Commons license

https://en.wikipedia.org/wiki/File:K-means_convergence.gif

Linear regression
Another intuitive example https://github.com/PyMLVizard/PyMLViz

𝑦(𝑥) = 𝒘𝑻𝒙 + 𝜖 =
𝐷

∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝜖

https://github.com/PyMLVizard/PyMLViz

Optimization: risk & losses

What we would like to generally do is minimize the
following scenario:

Find a hypothesis or decision procedure:  

and define the risk or expected loss as: 

Where is data from the true distribution,
represented by parameter

δ : 𝒳 → 𝒜

R(θ*, δ) = 𝔼p(D̃|θ*) [L(θ*, δ(D̃))]

D̃
θ*

Pages 197-209

Optimization: risk & losses

The challenges:

• Cannot actually compute above risk (usually
don’t know the distribution)

• Besides: if we think of e.g. binary
classification, i.e. a 0-1 measure, it can be
hard to optimize as it is not smooth

R(θ*, δ) = 𝔼p(D̃|θ*) [L(θ*, δ(D̃))]

Pages 197-209

Optimization: risk & losses

 

instead:

But can look at the true but unknown response and
our predictions given an input x.

As we still do not know the true distribution, we can
also use empirical estimates:

R(θ*, δ) = 𝔼p(D̃|θ*) [L(θ*, δ(D̃))]
R(p*, δ) = 𝔼(x,y)∼p* [L(y, δ(x))]

δ(x)

Remp(D, δ) = 1/N
N

∑
i=1

L(yi, δ(xi))

Pages 197-209

Optimization: risk & losses

Pages 197-209

We then usually chose a loss function, e.g. the
mean squared error (supervised):

or similarly an unsupervised reconstruction:

Remp(D, δ) = 1/N
N

∑
i=1

L(yi, δ(xi))

L(y, δ(x)) = (y − δ(x))2

L(y, δ(x)) = | |x − δ(x) | |2
2

Optimization: gradient descent

There are various optimization algorithms, the most popular ones are perhaps: 
(Stochastic) gradient descent - SGD and expectation maximization (EM)

Let us consider (S)GD here, as the “workhorse” underlying a lot of deep learning:

• In the simple form, a first order optimization algorithm to find a minimum of a
differentiable function

• Achieved by iteratively taking (small) steps in the gradient direction of a function f in
the direction in which it decreases the fastest: 

 xn+1 = xn − λ∇f(xn) where f(x0) ≥ f(x1) ≥ … ≥ f(xn)

Optimization: gradient descent

We can easily transfer this concept to the idea of parameters and losses:

Then iterative updates become (where in neural nets we backpropagate gradients):

Let us talk about gradient estimates, stochasticity, step sizes, and ultimately the idea of
forgetting with interactive examples

L(θ) = 1/N
N

∑
i=1

Li(θ))

θ ← θ − λ∇L(θ) = θ − λ/N
N

∑
i

∇Li(θ)

Stochastic & gradient descent

Another interactive detour https://github.com/PyMLVizard/PyMLViz

https://github.com/PyMLVizard/PyMLViz

Demo: for pdf completeness

We have visited gradient descent vs stochastic gradient descent

Saddle points with gradient descent and with stochastic gradient descent

Demo: for pdf completeness

Assume this wasn’t there in “task” 1
And then you add it!  

(Or even if you don’t & noise is too large)

We have motivated interference/forgetting from an SGD point of view

How do we prevent forgetting?

The undesired trivial solution: large amounts of parameters + data accumulation 
But also, caution, if we are constrained by capacity, we won’t learn indefinitely!

Keep in mind however (transfer): 
if the number of parameters is limited &
already learned, it will become
increasingly difficult to encode new
concepts (e.g. on the right example of
permuting the data points over time)

Continual Backprop: Stochastic Gradient Descent with Persistent
Randomness, Dohare et al, arXiv preprint:2108:06325

How can we alleviate forgetting?

How do we alleviate forgetting?
Regularize important parameters (today):  
Either identify relevant parameters for a task and make
sure they do not change much, or make sure the input
output relationship remains the same 

Rehearsal:  
Either store a subset of old data to rehearse or make use
of a generative model to generate old task data

Modify the architecture:  
Either use task specific masks in an overparameterized
model or grow/expand the architecture

Categorization found in several recent reviews, e.g. Parisi
2019, DeLange 2019, Biesialska 2020, Hadsell 2020…,
but outlined mostly already in McCloskey & Cohen 1989,
Ratcliff 1990, French 1999 and many more Figure from “A Wholistic View of Deep Neural Networks: Forgotten Lessons and the Bridge

to Active and Open World Learning”, Mundt et al, Neural Networks 2023, (arxiv 2020)

Some early thoughts

Rehearsal

Modifying the model

Most definitely not the earliest, but very intuitive examples!  
Ideas date back to at least the 70s, even the 50s.

McClelland et al, “Why there are complementary learning systems in the hippocampus
and neocortex”, Psychological Review 102, 1995 (see also Robins 1995)

R. French, “Using semi-distributed representations to overcome
catastrophic forgetting in connectionist networks”, AAAI 1993

How do we prevent forgetting?

Hadsell et al, “Embracing Change: Continual
Learning in Deep Neural Networks”, Trends in

Cognitive Sciences 24:12, 2020

Stability - plasticity (sensitivity)

For “regularization approaches”, what we are essentially interested in is the so called stability -
plasticity (or sensitivity) dilemma (Hebb, “The organization of behavior”, 1949).

Hadsell et al, “Embracing Change: Continual Learning in Deep Neural Networks”, Trends in Cognitive Sciences 24:12, 2020

1. Finding and regularizing important parameters

Elastic weight consolidation

Kirkpatrick et al, “Overcoming catastrophic forgetting in neural networks”, PNAS 114(13), 2017

Instead of naively continuing to optimize task B, we can
impose a penalty on previously learned parameters
(assuming over-parameterization).

We will need to find a matrix F that tells us which parameters
are most important for task A. 
 
Example: Fisher information (related to natural gradients,
the second derivative of the loss near a minimum, can be
approximated). We will skip the details here for simplicity. 
(https://agustinus.kristia.de/techblog/2018/03/11/fisher-
information/ provides a nice summary)

L(θ) = LB(θ) + ∑
i

λ
2

Fi(θi − θ*A,i)
2

https://agustinus.kristia.de/techblog/2018/03/11/fisher-information/
https://agustinus.kristia.de/techblog/2018/03/11/fisher-information/
https://agustinus.kristia.de/techblog/2018/03/11/fisher-information/

Parameter importance intuition

Achille et al, “Where is the information in a deep neural
network”, UCLA-TR:190005, 2019

Synaptic intelligence

Here, “synapse” synonymous with parameter.

Key idea: change (with time t) in loss is well approximated by the gradient (g):

Each parameter change contributes amount to the change in total loss.

Assign an importance to each parameter according to the monitored trajectory and formulate
a similar penalty to EWC again (with a different measure of importance).

L(θ(t) + δ(t)) − L(θ(t)) ≈ ∑
k

gk(t)δk(t)

δk(t) = θ′￼

k(t) gk(t)δk(t)

2. Maintaining (input-output) relationships

Knowledge distillation

Alternatively, we know that if we have enough parameters, there are many potential
solutions to produce the same input-output relationships.

Key idea: Let’s try to maintain a task’s input-output relationship

Gou et al, “Knowledge Distillation: A survey”, International Journal of Computer Vision 129, 2021

Knowledge distillation
Special case: classifier logits (Hinton et al,

“Distilling the Knowledge in A Neural Network”,
NeurIPS 2014 Deep Learning Workshop):

Normally T=1, for higher T softer probability
distributions are produced.

In essence we are making sure that the distance
between z and v of two models is minimized, or
more generally minimizing the KL divergence
over the two probability distributions.

qi =
exp(zi/T)

∑j exp(zj /T)

1
T

(qi − pi) =
1
T

exp(zi/T)
∑j exp(zj /T)

−
exp(vi/T)

∑j exp(vj /T)

Knowledge distillation

Apart from continual learning (on the next slides), why would we like to distill?

Gou et al, “Knowledge Distillation: A survey”, International Journal of Computer Vision 129, 2021

Knowledge distillation

Gou et al, “Knowledge Distillation: A survey”, International Journal of Computer Vision 129, 2021

We generally have various choices
of what types of relationships we
wish to distill (and how)

Continual knowledge distillation

Learning without forgetting 
 (Li & Hoiem, “Learning without
Forgetting”, ECCV 2016)

Key idea: compute task “head” with new
data and continue to preserver this
input-output relationship, while
learning a new task “head”
simultaneously

Continual knowledge distillation

But “cross-talk” can be challenging, if we don’t dedicate an individual expert to each task

Especially true for e.g. Softmax layers that normalize over the entire output vector

Let’s discuss if expert outputs are desirable when we learn about structure changes

Li & Hoiem, “Learning without Forgetting”, ECCV 2016

Continual knowledge distillation

Rannen & Aljundi et al, “Encoder Based Lifelong Learning”, ICCV 2017

Has become very popular in continual
learning & adapted in various ways

Has been extended to generative models,
(shared feature spaces) etc.

A larger scale example

Distillation is regularly used together with other techniques, such as generative models,
rehearsal, or architecture modifications/expansion -> we will discuss those next week

Zhao & Chen et al, “Lifelong GAN: Continual Learning for Conditional Image Generation”, ICCV 2019

