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We could talk about Al applications...
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Inspect surface Measure defects

Many factors: low amounts of data, experts are rare, annotation is cumbersome,

predictions need to be robust (safety critical), tons of variation when system is deployed

Mundt, CVPR 2019



The standard machine learning workflow

Data is fed as input and
the algorithm configured

Preparing datais a with the required PUbl'S’.h the prepared
: crucial step and involves parameters. A percent of expgrlment asa we-b
Identify the problem to building workflows to the data can be utilized to service, 5o applications
HE solve_d apd create a clean, match and blend train the model. can use the model
clear objective. the data.

Define Prepare Select Integrate

objective Data Algorithm Model

Collect data from Depending on the The remaining data is utilized to test

hospitals, health problem to be solved and the model for accuracy. Depending

Insurance companies, the type of data, an on the results, improvements can be

social service agencies, appropriate algorithm performed in the “Train model”

police and fire dept. will be chosen. and/or “Select Algorithm” phases,
iteratively.

Figure from https://www.congrelate.com/get-workflow-machine-learning-images/



Is a static machine learning workflow + scale all we need?

o Research Director at Deepmind says all we need now is scaling

: A Nando de Freitas @& @Nando... -4 t.
10B Someone’s opinion article. My opinion:
It’s all about scale now! The Game is
Over! It’s about making these models
T 1B # Citation bigger, safer, compute efficient, faster at
§ ® 5K sampling, smarter memory, more
2 ® 500 modalities, INNOVATIVE DATA, on/
c offline, ... 1/N
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fear humans will never achieve AGI
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Li & Gao, “A deep generative model trifecta: three advances that work towards harnessing large-scale power, Microsoft Research Blog, 2020:
https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances-that-work-towards-harnessing-large-scale-power/



We have “foundation” models now, but humans learn & reason

Importantly, humans revise their knowledge & continue adapting

Slides adapted from our AAAI-23 Continual Causality Tutorial, Cooper & Mundt



Why sho
uld we care:
are: can we trust deep neural net
networks?

gebastian Lapuschkin,

& Klaus—Robert Miller




Example: Husky or Wolf?

Consider an example
image classification task
about distinguishing
between husky dogs
and wolves



Example: Husky or Wolf? ... and why?

Consider an example Local explanations
image classification task allow to spot cases
about distinguishing where the model is
between husky dogs right for the wrong

and wolves reasons



Example: Husky or Wolf? ... and why? ... and feedback!

It is a husky, but not because of the highlighted pixels!




Example: Husky or Wolf? ... and why? ... and feedback!

Explanatory
Interactive
Learning

A. Explain predictions to users (competence, understandability)
B Allow user to correct explanations (directability)




Of course, the
pattern is not

exclusive to images

Example: plant

nacure
machine
intell

phenotyping

Schramowski et al.
Nature Machine
Intelligence 2020

Hyperspectral cube Spectral signatures

Predict if a plant suffers
from biotic stress using |

Qyperspectral images.
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(b) Machine Learning: Often no interaction. Expert just provides the hyperspectral data and the labels.
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(b) Machine Learning: Often no interaction. Expert just provides the hyperspectral data and the labels.

(¢) "Clever Hans"-like behavior: Explainable Al (XAI) methods may reveal "Clever Hans" behavior of the learnt machine,
in particular when using deep neural networks.
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Of course, the

pattern is not

exclusive to images

Example: plant

nacure
machine
intell

phenotypic

Schramowski et al.
Nature Machine
Intelligence 2020

Qyperspeetral Images.

/(b) Machine Learning: Often no interaction. Expert just provides the hyperspectral data and the labels.
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(¢) "Clever Hans"-like behavior: Explainable Al (XAI) methods may reveal "Clever Hans" behavior of the learnt machine,
in particular when using deep neural networks.

(d) Explanatory Interactive Machine Learning: Combines XAl and interactive machine learning to counteract
"Clever Hans"-like behavior.




Unfortunately, visual explanations alone are not all we need either

CNN

Underlying concept: the image contains
a large cube & a large cylinder

Default

XIL
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Right for the right neuro-symbolic reasons!

Concept Embedding
Slot Attention

.........

Reasoning Module

4o+

Set-
Transformer

I\

Neuro-Symbolic 1 N
Explanatory Interactions .

Vimg. Yobj. [in(obj, img) =
~(color(obj, gray))|

|

10

Large Gray

Semantic
Explainer
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Combine human & machine intelligence Zi:l r(4y, &)+ ( )Zizl r(4i, €)  Ross et al IJCAI 2017
Teso, Kersting AIES 2019

via an explanatory loss term Selvaraju et al ICCV 2019
Schramowski et al Nature MI 2020



:
(b
0
)
(@)
-
(4w
. -

¥ O
O C

QO

C

g o

o O

O

-~ O

.mr

)

& O
> >

D o
(7))
(qv

0
) -
()]
>
((b)

Z

>
)
v
Z

CNN

- umo.lg
- Aelo

- U33.19
. Um

- 9|ding
- MO|[DA

el

Bl 2151

1aqgny

L JIECES

- abue
- 19pUIlAD
-aqn)

- 213yds

----------

— o i
~

nejag

1IX

- umoug
- Aelo
SEEY
. Um

- 9|dund

- MO||IDA
| 8&“

- ue
SEN

J

-19qqny
- ||[eWS

- abue]
-J3pullAD




What if there is a new concept

Task C

Task X

Welinder et al, Caltech-UCSD Birds 200

Kudithipudi et al, Nature Ml 2022



Another challenge: deep models don’t know when they don’t know

Dataset classification

20000 FashionMNIST (trained)
- MNIST
- KMNIST
17500 = CIFAR1O
CIFAR100
SVHN
15000 AudioMNIST
D (Deep neural) models are
gusoo | | . :
£ overconfident on datasets
S 10000 w B they were never trained on
2
g 7500
=z
5000
2500
o Matan 1990
%0 63 s es os 1o Mundt et al. ICCV 2019

Classification confidence Mundt et al. Journal of Imaging 2022



...and even worse, neural nets fail to learn sequentially.
Humans don’t!

Training order

Blocked
training

Training Epoch
ConcepP ¢ Catastrophic

Interference

(McCloskey &
Cohen 89)

Adapted from Flesch et al 2022



Why might neural networks be so forgetful? Is it surprising?

Task Il

Task Il

After training on task |

Slides adapted from our AAAI-23 Continual Causality Tutorial, Cooper & Mundt



Why might neural networks be so forgetful? Is it surprising?
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Slides adapted from our AAAI-23 Continual Causality Tutorial, Cooper & Mundt



Why might neural networks be so forgetful? Is it surprising?

Task Il

Task Il Task Il

Task Il

Task Il Task Il

Task |

After training on task | After training on task Il

Slides adapted from our AAAI-23 Continual Causality Tutorial, Cooper & Mundt



We can mitigate this problem with generative models
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Continual Machine Learning L(0,0,£) = Egy(z|z) [logpe(x|2) + logpe(y|z)] — BKL(ge(z|x) || p(2))]

That Can Identify What It
Doesn’t Yet Know

Volume 8 - Issue 4 | April 2022

-> we learn how to encode data into generative factors &

in turn how to decode (generate) these into data

MDPI mdpi.com/journal/jimaging
ISSN 2313-433X
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We can mitigate this problem with generative models
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We can then measure similarity to factors we have already

observed & replay knowledge from already seen ones




Al
10.22

(" Assigned outlier percentage) >
11.70

Accept prediction & generate known data
Avoid ambiguous & reject unknown data

Mundt et al. Journal of Imaging 2022
Hong & Mundt Neural Networks 2022



So ultimately, the prevalent common ML pipeline is unrealistic

Data is fed as input and
the algorithm configured

Preparing datais a with the required PUbl'S’.h the prepared
: crucial step and involves parameters. A percent of expgrlment asa we-b
Identify the problem to building workflows to the data can be utilized to service, 5o applications
HE solve_d apd create a clean, match and blend train the model. can use the model
clear objective. the data.

Define Prepare Select Integrate

objective Data Algorithm Model

Collect data from Depending on the The remaining data is utilized to test

hospitals, health problem to be solved and the model for accuracy. Depending

Insurance companies, the type of data, an on the results, improvements can be

social service agencies, appropriate algorithm performed in the “Train model”

police and fire dept. will be chosen. and/or “Select Algorithm” phases,
iteratively.

Figure from https://www.congrelate.com/get-workflow-machine-learning-images/



In reality it may look much more like this with sensor drifts, novel
concepts in data, focus on wrong reasons, or even new tasks
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even further

Bendale & Boult, CVPR 2015
Mundt et al, Neural Networks 2023



And In reality, likely much much more complex than six simple steps

Versioning: stage versions according to Data: amount, redundancy vs. diversity,
prediction evaluation and deployment cleaning, preprocessing

discretized vs. continuous versions, back- data selection and ordering, task similarity,
ward compatibility AoNS Py, noisy streams, distribution shifts
NC gy

Prediction: test set evaluation, failure .98 % Model: architecture, inductive bias, dis-
modes and robustness .g (Continual) < criminative/generative, functions, parameters
& Machine Learning C
evolving test set, inherent noise and ‘g Workflow model extensions, task-specific parameter
: : 8 R : et
perturbations, open world scenario ‘é ) identification
Y
&
/%Ip %
Q
oyment: m saving, platform : loss tion, optimizer, hyper-
Depl odel saving, platf 'f%bq ‘epov'\"“ Training: loss functi imizer, h
compatibility, serving and cloud parameters, convergence

optimizer states and meta-data, distributing catastrohic forgetting, knowledge transfer

continuous updates, communication cost or distillation, selective updates, online

Mundt et al, ICLR 2022



Not yet convinced? What if our application doesn’t require *all* of these factors?
Pragmatically: Why should we still care?
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Mundt et al, ICLR 2022



Not yet convinced? What if our application doesn’t require *all* of these factors?
Pragmatically: Why should we still care?

WHAT FACTORS CONTRIBUTE TO
IRREPRODUCIBLE RESEARCH?

Many top-rated factors relate to intense competition and time pressure.

® Always/often contribute ® Sometimes contribute

Selective reporting

Is Il[l[ ‘ Pressure to publish

R [ P n “ n u c I n I lIIY Not replicated enough in original lab
c n I s | s ? Insufficient oversight/mentoring
'

A Nature survey lifts the lid on Methods, code unavailable
how researchers view the ‘crisis’
rocking science and what they Poor experimental design
think will help.

Low statistical power or poor analysis

Raw data not available from original lab
BY MONYA BAKER

Fraud

Insufficient peer review

1,576

e Baker, Nature 2016



Systems are complex! Assumptions & evaluation setups often collapse aspects into
scalar measured quantities. Let’s acknowledge this fact & make it transparent

e ~ s - ™
Chen & Liu (2018): “is a learning q o ; - ) Hospedales et al. (2021): “is most
. paradigm where the training data Caruana (1997)!_ Isan mducftve‘ commonly understood as learning
Online points arrive in a sequential order. ":;lwf,er mechanism whos;p"{wwle to learn. During base learning, an Meta
Learnin When a new data point arrives, the 8oal is to improve generalization inner learning algorithm solves a Learnin
g existing model is quickly updated to performance by leveraging the task, defined by a dataset and g
produce the best model so far.” domain-specific information objective. During meta-learning, an
. J contained in the training signals of outer algorithm updates the inner .
. o . ‘u related tasks. It does this by learning algorithm such that the * .
Ve 'y :"s ‘f:”;gs‘::’k: d":-e P‘:: ?iffa‘:;ﬁzi kmodel improves an outer objective.” ) R :
L e O,
¥¥ X
4 ) g ™
Boult et al. (2019): “An effective = _ Wang et al. (2020): “is a type of
open world recognition system must Open WOI' 1d Multi .taSk Few S.hOt machine learning problem
efficiently perform four tasks: Learning learning Learning (specified by experience E, task T

and performance measure P),
where E contains only a limited
number of examples with
supervised information for the
target T. Methods make the learning
of target T feasible by combining
the available information in E with
L some prior knowledge.”

detect unknowns, choose which

points to label for addition to the

model, label the points, and update
| the model.”
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Settles (2009): “The key hypothesis Pan & Yang (2010): “A domain D
in active learning (sometimes choose data instances C aximize performance consists of two components: a
_ ONTINUAL _ Transfer

called “query learning” or Active Sfeature space X and a marginal
“optimal experimental design” in : Learnin probability distribution P(X),
to include continuous LEARNING on all sequential tasks g

the statistics literature) is that if the where X = {xy,...,z,} € X.
learning algorithm is allowed to Given a source domain Ds and
choose the data from which it learns learning task Ts, a target domain

-

- 1o be “curious”, if you will - it will g : Dr and learning task Tr, transfer
-~ -
perform better with less training.” @ <] learning aims to help improve
- < slo e 8 learning of the target predictive
@ 3 E 8' function fr() in Dy using the
§ 3 = 5 knowledge in Dg and Ts, where
7] = (5‘,' g’ Ds#DT,OrTg';#'Fr. "
.E b w S - /
b B = [=%
- FE R E A
AE A p N g Task Agnostic ©F
> McMabhan et al. (2017): “leaves the g
~ - » training data distributed on devices, 7
Hacohen & Weinshall (2019): and learns a shared model by (Pan & Yang (2010): “Givena | Lo
“deals with the question of how to . pIe | assregating locally-computed . source domain Ds and a J st
use prior knowledge .aboul the Curriculum r o updates. We term this decerhxtra’{:zed Domain corresponding learning task Ts, a mem rp— . s‘ﬁp
difficulty of the training examples, Learm'ng O ,‘kappmach Federated Learning. ) A daptation target domain Dy and a Cs t]_mlzatlon
in order to sample each mini-batch %° T corresponding learning task T,
non-uniformly and thus boost the transductive transfer learning aims .
rate 0f Iearm'ng and the accuracy. ( Yeu, o .7 10 impmve the leanu'ng of the target . OSAKA (CaCCIa et al., 2020) D FedweIT (YOOII et al., 202 l) A‘GEM (Chﬁlldhl'y et al-, 2019)
:: 'I; ba’.:ecf on the intuition th;: it , ‘e Federated vt prediction function fr() in Dr
elps the learning process when the using the knowledge in Ds and Ts, .
learner is presented with simple Leammg where Ds # Dr and Ts = Tr.” D VCL (Nguyen et al., 201 8) D OCDVAE (Mundt et al., 2020b ,a)
concepts first. " - ~
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Summary & take-aways

1. Standard deep neural networks are not right for the right reasons
2. Standard deep neural networks don’t know what they don’t know
3. Standard deep neural networks are bad at learning sequentially/continually

But very powerful -> generative + symbolic + human




Thanks to ... and many more!
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