Continual Machine Learning

Summer 2023

Teacher
Dr. Martin Mundt,

hessian.Al-DEPTH junior research group leader on Open World Lifelong Learning (OWLL)
& researcher in the Artificial Intelligence and Machine Learning (AIML) group at TU Darmstadt

Time Course Homepage
Every Friday 14:25 - 16:05 CEST http://owll-lab.com/teaching/cl_lecture 23

https://www.youtube.com/playlist?list=PLm6QXeaB-XkA5-IVBB-h7XeYzFzgSh6sk

@Wﬂﬁﬂ\@ ContinualAl @2 hessian.Al § # unversiar

9’ DARMSTADT



http://owll-lab.com/teaching/cl_lecture_23

%57, TECHNISCHE
&)=\ UNIVERSITAT
9~ DARMSTADT

GWILILE oo continuaAl - &2 hessian.a

Week 7: Evaluation
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Why is evaluation challenging in machine learning?

Dimensions of evaluation in continual/lifelong learning

Why evaluation is even more challenging in continual/lifelong learning

How can we move forward?
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7%

Don’t know

3%

No, there is no crisis

|3 THERE A

REPRODUCIBILITY
GRISIS?

A Nature survey lifts the lid on
how researchers view the ‘crisis’
rocking science and what they
think will help.

BY MONYA BAKER

52%

Yes, a significant
Crisis

1,576
RESEARCHERS SURVEYED

“1500 scientists lift the lid on reproducibility”, Baker, Nature, issue 533, 2016
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7%

Don’t know

s HAVE YOU FAILED TO REPRODUCE
e AN EXPERIMENT?

Most scientists have experienced failure to reproduce results.
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® Someone else’'s @ My own
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EPRODUCIBILITY
GRISIS?

A Nature survey lifts the lid on
how researchers view the ‘crisis’
rocking science and what they
think will help.
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BY MONYA BAKER

38%
Yes, a slight
Crisis

52%

Yes, a significant
Crisis

1,576
RESEARCHERS SURVEYED

“1500 scientists lift the lid on reproducibility”, Baker, Nature, issue 533, 2016
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WHAT FACTORS CONTRIBUTE TO
IRREPRODUCIBLE RESEARCH?

Many top-rated factors relate to intense competition and time pressure.

® Always/often contribute Sometimes contribute

Selective reporting

Pressure to publish

Low statistical oower or poor analysis
Not replicated enough in original lab
Insufficient oversight/mentoring
Methods, code unavailable

Poor experimental design

Raw data not available from original lab

Fraud

Insufficient peer review

40 60 80 100%

“1500 scientists lift the lid on reproducibility”, Baker, Nature, issue 533, 2016
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WHAT FACTORS CONTRIBUTE TO

Many topriiszach)igggtgﬁirifcﬁiigﬁfﬁljr:e pressure HA VE YOU EVE R TR I E D TO P UB L, SH
| A REPRODUCTION ATTEMPT?

| | SRR Although only a small proportion of respondents tried to publish
Selective reporting : : ; replication attempts, many had their papers accepted.

® Always/often contribute @ Sometimes contribute

Pressire to publish . ® Published @ Failed to publish

Low statistical power or poor analysis N _ 240/
- B Successful 0

Not replicated enough in original lab

reproduction 0
Insufficient oversight/mentoring Iz /0

Methods, code unavailable

Poor experimental design — |3%
Unsuccessful
Raw data not available from original lab | R R reproduction _ qu/
Fraud 0

Insufficient peer review

“1500 scientists lift the lid on reproducibility”, Baker, Nature, issue 533, 2016
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Are we In a crisis in ML too?
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ML & the reproducibility crisis? GWLLE =l & hessiana

Through experimental methods focusing on PG methods
for continuous control, we investigate problems with repro-
ducibility in deep RL. We find that both intrinsic (e.g. random

seeds, environment properties) and extrinsic sources (€.g. hy-
perparameters, codebases) of non-determinism can contribute

to difficulties 1n reproducing baseline algorithms.

“‘Deep Reinforcement Learning that Matters”, Henderson et al, AAAI 2018



Recall: “static” models/data

Top-1 accuracy [%]
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Bianco et al, “Benchmark Analysis of Representative Deep Neural
Network Architectures”, IEEE Access, 2018
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Even in “static” scenarios:
e Many aspects of variation/interest!

e Fair comparisons, statistical significance,
exhaustive & factual reporting

e (Misaligned?) research incentives
e Code, data, assets, accessibility...
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Why is evaluation challenging in machine learning?
Dimensions of evaluation in continual/lifelong learning
Why evaluation is even more challenging in continual/lifelong learning

How can we move forward?
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What where some of the sequences of tasks we have seen so far?

e A sequence of datasets

e Sequences of classes (from known datasets)

e Sequentially querying the instances of datasets

e Sequences of games (in RL), or languages etc.

e Sequences of the same task with shifting distribution
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Benchmarks commonly based on popular vision datasets,
language datasets, or reinforcement tasks (such as games)

CUB-200 CORe50

Figure 3. Example images from benchmark datasets used for the evaluation of lifelong learning

Parisi et al, “Continual Lifelong Learning with Neural Networks: A Review”, Neural Networks 2019
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For now: let’s assume that we know the sequence of tasks,
I.e. a dedicated test set for each “experience/task” exists

Name Details Related works
e a typologically diverse multilingual dataset for causal com-
XCOPA - Cross-lingual Choice monsense reasoning, which is the translation and reannota-  (Edoardo M. Ponti and
of Plausible Alternatives tion Korhonen, 2020)

e covers 11 languages from distinct families

e a dataset of millions of webpages suitable for learning lan-
WEBTEXT guage models without supervision (Radford et al., 2019)
e 45 million links scraped from Reddit, 40 GB dataset

C4 - Colossal Clean Crawled ©®2 dataset constructed from Common Crawl’s web crawl cor-

pus and serves as a source of unlabeled text data (Raffel et al., 2020)
e 17 GB dataset

Corpus

LIFELONG FEWREL - Lifelong

Few-Shot Relation Classification
Dataset

e sentence-relation pairs derived from Wikipedia distributed  (Wangetal.,2019b)
(Obamuyide and

over 10 disjoint clusters (representing different tasks) Viachos, 2019)

e single-relation questions divided into 20 disjoint clusters (i.e.

LIFELONG SIMPLE QUESTIONS resulting in 20 tasks)

(Wang et al., 2019b)

Biesialska et al, “Continual Learning in Natural Language Processing: A Survey”, COLING 2020
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Continual Learning Methods
N
Replay Regularization-based Parameter isolation
methods methods methods
" | —— | ——
__— | —_
Rehearsal Pseudo Constrained Prior-focused Data-focused Fixed Dynamic
| Rehearsal | | Network Architectures
iCaRL [16] | GEM [55] EWC [27] LwF [58] | |
ER [49] DGR [12] A-GEM|[6] IMM [28] LFL[59] PackNet [61] PNN [64]
SER [50] PR [52] GSS [48] SI [56] EBLL [9] PathNet [30] Expert Gate [5]
TEM [51] CCLUGM [53] R-EWC [57] DMC [60] Piggyback [62]  RCL [65]
CoPE [33] LGM [54] MAS [13] HAT [63] DAN [17]
Riemannian
Walk [14]

De Lange et al, “A continual learning survey: Defying forgetting in classification tasks”, TPAMI 2021
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Depending on choice of method, we will likely be interested in different measures
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Rehearsal methods:
 \What do you think should be here?

Regularization methods:

Architecture/parameter methods:



S, TECHNISCHE

SIS/

g@/é UNIVERSITAT
%9y DARMSTADT

—_—

Aspects of the mechanisms GWILIE e contnlAl - &2 hessian.A

Rehearsal methods:
e Original data amount, generated data, (constant?) memory size, computational expense...

Regularization methods:
 Regularization strength (hyper-parameters), memory expense, computational expense...

Architecture/parameter methods:

e Number of parameters, number of models, expert heads,
memory expense, computational expense...
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Final average losses seem insufficient

Let’s take a look at some further suggestions



(Some) ways to measure

Accuracy (%) for Classes

Trained on so Far

GWILILE oo continuaiAl - &2 hessian.Al

Do we care about the overall performance?
Or the one up to the current point in time?
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Kemker et al, “Measuring Catastrophic Forgetting in Neural Networks”, AAAI 2018
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e "Base” loss: the initial (an old) task after i new experiences

p
Qbase — 1 Z ase.l

i— ideal

T

e "New” loss: the newest task only L2 Z Onew,i
T

Kall i
Qall — E

=2 Qideal

e "All” loss: average up to the present point in time

e “|deal” loss: offline value trained at once

Kemker et al, “Measuring Catastrophic Forgetting in Neural Networks”, AAAI 2018
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e "Base” loss: the initial (an old) task after i new experiences
-> Measure retention

p
Qbase T 1 Z ase,l

[=2 Kideal

T
e "New” loss: the newest task only 2 Z Xnew,i
-> Measure abillity to encode new tasks .
Kall i
Qall — E
=2 Rideal

e "All” loss: average up to the present point in time
-> Measure present overall performance

e “|deal” loss: offline value trained at once
-> Measure achievable “baseline”

Kemker et al, “Measuring Catastrophic Forgetting in Neural Networks”, AAAI 2018
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“We define forgetting for a particular task (or label) as the difference between the maximum
knowledge gained about the task throughout the learning process in the past and the
knowledge the model currently has about it.”

(Chaudhry et al, "Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence”, ECCV 2018)

For the |-th task after being trained up to task k > j:

k .
Y = max ar : — Q. - V1 <k
J; le{1, - k—1} " kg Y
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“We define intransigence as the inability of a model to learn new tasks. Since we wish to
quantify the inability to learn, we compare to the standard classification model which has
access to all the datasets at all times”

(Chaudhry et al, "Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence”, ECCV 2018)

For a reference model for task k (denoted by *):

*
Ik — A — Ak k
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(Avg.) Forward transfer (with random baseline b): R Teiy Tey Teg
iInfluence of a learning task on future tasks; T, | DR* DD
Tr | & DEGRED
—_ 1 . =
FWT,, = as_1, —b;  FWT; Fwr,., LTz | Ri;  R* [RGE
»J »J J t—1 JT 5 *
j=2 T'I‘g Rz j Rij R
(Avg.) Backward transfer: influence of a task On  Sce sico: bias Rodriguor & Lomanaco ot ol “Don forget, there 1 more han

preViOUS taSkS' negative — fOrgetting pOSitiVe — forgetting: new metrics for Continual Learning”, 2018

retrospective improvement

t—1
1
BWTt,j — At 5 — Q4 4 BWT,; = o E BWT; ,
7=1
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(Avg.) b-shot performance (b = mini-batch number)
after the model has been trained on all tasks T:

.
Ly = T ]; Ak b k

Learning Curve Area (LCA) at beta is the area of the
convergence curve Z as a function of b in [0, beta].

1 [P 1 &
LCAB:B_I_l/O Zbdb:ﬁ_HZZb
b=0

Beta = 0 is zero-shot performance == Forward transfer

Chaudhry et al, “Efficient Lifelong Learning with A-GEM”, ICLR 2019
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We can construct similar measures for memory, size & compute (Here tasks are called N)

(Diaz-Rodriguez & Lomonaco et al, "Don’t forget, there is more than forgetting: new metrics for Continual Learning”, 2018)

N Mem(6,) N Mem(M;)
N  Opstd(Tr:)-e Z': , : Zizl Mem (D
CE = min(1 2 i=1 Ops(T'r;) ) MS = min(l’ 1=1 ]]:[/"em(g") ) SSS =1—min(1, N (D) )
’ N

Computational Efficiency Model Size Efficiency Sample Storage Size Efficiency

Quantifies add/multiply ops Quantifies parameter Quantifies stored amount of data
(inference & updates) growth (for rehearsal)
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There are plenty of other interesting ideas of
what to measure
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Why is evaluation challenging in machine learning?
Dimensions of evaluation in continual/lifelong learning
Why evaluation is even more challenging in continual/lifelong learning

How can we move forward?
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What should we report now?



The challenge of comparison
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How do we compare & draw conclusions with various metrics + set-ups?

Model Dataset Data Permutation Incremental Class Multi-Modal Memory Model
Qpase Qnew Qi Qpase Qnew Qi Qpase Qnew Qi Constraints | Size (MB)
MNIST | 0434 0996 0.702 | 0.060 1.000 0.181 N/A N/A N/A 1.91
MLP CUB 0.488 0917 0.635 | 0.020 1.000 0.031 | 0.327 0412 0.610 Fixed-size 4.24
AS 0.186 0957 0446 | 0.016 1.000 0.044 | 0.197 0.609 0.589 2.85
MNIST | 0437 0992 0.746 | 0.001 1.000 0.133 N/A N/A N/A 3.83
EWC CUB 0.765 0869 0.762 | 0.105 0.000 0.094 | 0944 0.369 0.872 Fixed-size 8.48
AS 0.129 0.687 0.251 | 0.021 0.580 0.034 | 1.000 0.588 0.984 5.70
MNIST | 0.687 0.887 0.848 N/A N/A N/A N/A N/A N/A New output 2.80
PathNet CUB 0.538 0.701 0.655 N/A N/A N/A 0908 0.376 0.862 layer for 7.46
AS 0414 0.750 0.615 N/A N/A N/A 0.069 0.540 0.469 each task 4.68
MNIST | 0912 0242 0364 | 0960 0.824 0.922 N/A N/A N/A Stores all 190.08
GeppNet CUB 0.606 0.029 0.145 | 0.628 0.640 0.585 | 0.156 0.010 0.089 training 53.48
AS 0.897 0.170 0.343 | 0984 0458 0947 | 0913 0.005 0.461 data 150.38
MNIST | 0.892 0.212 0.326 | 0919 0.599 0.824 N/A N/A N/A Stores all 191.02
GeppNet+STM CUB 0.615 0.020 0.142 | 0.727 0.232 0.626 | 0.031 0.329 0.026 training 55.94
AS 0.820 0.041 0.219 | 1.007 0355 0920 | 0.829 0.005 0418 data 151.92
MNIST | 0.117 0990 0.279 | 0451 1.000 0.439 N/A N/A N/A 4.54
FEL CUB 0.043 0.764 0.184 | 0.316 1.000 0.361 | 0.110 0.329 0.412 Fixed-size 6.16
AS 0.081 0.848 0.239 | 0.283 1.000 0.240 | 0473 0.320 0.494 6.06

Kemker et al, “Measuring Catastrophic Forgetting in Neural Networks”, AAAI 2018
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How do we compare & draw conclusions with various metrics + set-ups?

& e
&> ¢ N Q& ngc\ ‘\e&
2 .\‘35 A Q?
& & & & .®
S &\\ & & &
Model ¢ F Q¥ H <L
MLP X X Xx v /
EWC X X v v /
PathNet X v X X X
GeppNet v X X X X
GeppNet+STM v X X X X
FEL X X X X /

Kemker et al, “Measuring Catastrophic Forgetting in Neural Networks”, AAAI 2018
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How do we compare & draw conclusions with various metrics + set-ups?

Category Method Memory Compute Task-ag.nostic lfrivacy Additional required
possible issues storage
train  test train test
Replay-based iCARL 1.00 5.63 v v M+ R
GEM 1.29 v v T -M+R
Reg.-based LwF 1.10 v X M Low
EBLL 1.53 1.08 v X M+T-A
SI 1.05 v X 3-M High
EWC 1.05 v X 2-M
MAS 1.05 v X 2-M
mean-IMM 1.03 v X T-M
mode-IMM 1.03 v X 2-T-M
Param. iso.-based  PackNet 1.94 X X T - Mbit]
HAT 1.17 X X T-U

De Lange et al, “A continual learning survey: Defying forgetting in classification tasks”, TPAMI 2021
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Unfortunately, it’s not just about what to measure!
It’s about assumptions, trade-offs, benchmarks,...

Should we strive for specific benchmarks & overall
consensus or transparency?
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we evaluate CF behavior on the hitherto largest number of visual classification
datasets, from each of which we construct a representative number of Sequential
Learning Tasks (SLTs) in close alignment to previous works on CF. Our results

clearly indicate that there i1s no model that avoids CF for all investigated datasets
and SLT's under application conditions.

“A comprehensive, application-oriented study of catastrophic forgetting in DNNs”,
Pfuelb & Gepperth, ICLR 2019

- The lack of consensus in evaluating
continual learning algorithms and the almost exclusive focus on forgetting motivate
us to propose a more comprehensive set of implementation independent metrics
accounting for several factors we believe have practical implications worth con-

sidering 1n the deployment of real Al systems that learn continually: accuracy or
performance over time, backward and forward knowledge transfer, memory over-
head as well as computational efficiency.

“Don’t forget, there is more than forgetting: new metrics for Continual Learning”,

. Diaz-Rodriguez et al, Continual Learning Workshop at NeurlPS 2018
1. We propose fundamental desiderata for future evalua- J 9 P

tions, which can be applied regardless of dataset.

2. We analyse the shortcomings of existing widely used
evaluations in continual learning.

“Towards Robust Evaluations of Continual Learning”, Farquhar & Gal,
Lifelong Learning workshop at ICML 2018
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The challenge of defining a “task”
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It’s not just challenging to compare across multiple metrics,
it’s also challenging to agree on what “tasks” should be

Task 1

0/

first second first second first second first second first second .
class class class class class class class class class class TaSk'IL SOIVC taSkS SO far, taSk'ID prov1ded

Task 2 Task 3

Task 5 Table 1: Overview of the three continual learning scenarios.

n Scenario Required at test time

Domain-IL  Solve tasks so far, task-ID not provided

Class-IL Solve tasks so far and infer task-1D

Figure 1: Schematic of split MNIST task protocol.

Table 2: Split MNIST according to each scenario.

van de Ven & Tolias, “Three scenarios for continual learning”, arXiv:1904.07734, 2019

With task given, is it the 1% or 2" class?

Task-IL (e.g.,00r1)

With task unknown, is it a 1% or 2™ class?

Domain-1L (e.g., 1n [Oa 2,4,6, 8] or in [1’ 35,7, 9])

Class-IL With task unknown, which digit is 1t?
(1.e., choice from O to 9)
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It’s not just challenging to compare across multiple metrics,
it’s also challenging to agree on what “tasks” should be

Table 1: Overview of the three continual learning scenarios.
Task 1 Task 2 Task 10

(permutation 1) (permutation 2) (permutation 10) . o o
— T e P I CAS Scenario Required at test time
m- .n .- .. .n Task-IL Solve tasks so far, task-ID provided

Domain-IL  Solve tasks so far, task-ID not provided
Figure 2: Schematic of permuted MNIST task protocol. Class-1L Solve tasks so far and infer task-ID

. . van de Ven & Tolias, “Three scenarios for continual learning”, arXiv:1904.07734, 2019
Table 3: Permuted MNIST according to each scenario.

Task-IL Given permutation X, which digit?

Domain-IL  With permutation unknown, which digit?

Class-IL Which digit and which permutation?
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Why does such a scenario/“task”
distinction even matter?

i - y Recall the “experts” approach:
i B -  We could share parts + add
J G | G | W - 5 individual experts on top
@ . 2 ——] 0
i Soft max :;,
Input I»[ Features Extraction ] i

Figure 1. The architecture of our Expert Gate system.

Aljundi et al, “Expert Gate: Lifelong Learning with a Network of Experts”, CVPR 2017
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Expert heads often evaluated from a “forgetting only™ perspective.
Not only test set for each “experience/task, but also the task id is provided!

t'th model t'th model
1 2 3 4 5 1 2 3 4 5
f l l ] ] ] | | 1 1 L
1.0 1.0 -
< VGR —
> 0.8 *VGR*W > 0.8 - ——
© Y VCL+core E 0.6 - Y VCL+core
5 0679+ veL 5 907y va
8 0.4 A Core only éé 0.4 A Core only
< 0.2 4 4 Ewc 0.2 4 & Fwc
Figure 5. Multi-headed Split FashionMNIST. Figure 3. Single-headed Split Fashion MNIST.

Farquhar & Gal, “Towards Robust Evaluations of Continual Learning”, Lifelong Learning workshop at ICML 2018
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Expert heads often evaluated from a “forgetting only™ perspective.
Not only test set for each “experience/task, but also the task id is provided!

Approach Method Task-IL Domain-IL Class-IL
Baseli None — lower bound 87.19 (£ 0.94) 59.21 (+ 2.04) 19.90 (+ 0.02)
asetnes Offline — upper bound ~ 99.66 (+ 0.02) 9842 (+ 0.06)  97.94 (+ 0.03)
Task-specific XdG 99.10 (£ 0.08) - -
EWC 908.64 (£ 0.22) 63.95 (£ 1.90) 20.01 (£ 0.06)
Regularization Online EWC 99.12 (£ 0.11) 64.32 (£ 1.90) 19.96 (£ 0.07)
SI 99.09 (£ 0.15) 65.36 (£ 1.57) 19.99 (£ 0.06)
LwF 99.57 (£ 0.02) 71.50 (£ 1.63) 23.85 (£ 0.44)
Replay DGR 99.50 (£ 0.03) 95.72 (£ 0.25) 90.79 (£ 0.41)
DGR+distill 99.61 (£ 0.02) 96.83 (£ 0.20) 91.79 (£ 0.32)
Replay + Exemplars iCaRL (budget =2000) - - 94.57 (£ 0.11)

van de Ven & Tolias, “Three scenarios for continual learning”, arXiv:1904.07734, 2019
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The challenge of hyper-parameters in continual learning
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Algorithm 1 Learning and Evaluation Protocols

l:
2
3
4:
5:
6.
7
8

O:

10:
11:
12:
13:
14:
15:
16:

17:
18:

for h in hyper-parameter list do > Cross-validation loop, executing multiple passes over DV
for k = 1to T do > Learn over data stream D" using h
for: = 1 to ny do > Single pass over Dy

Update fo using (x7,tF, y¥) and hyper-parameter h
Update metrics on test set of DV
end for
end for

. end for

Select best hyper-parameter setting, h*, based on average accuracy of test set of DV, see Eq. H
Reset fg.
Reset all metrics.
fork =T +1toT do > Actual learning over datastream D"V
for: = 1tong do > Single pass over Dy
Update fy using (x7,t¥, y¥) and hyper-parameter h*
Update metrics on test set of DV
end for
end for
Report metrics on test set of DZV.

Chaudhry et al, “Efficient Lifelong Learning with A-GEM”, ICLR 2019

There are more set-up
assumptions: how do
we select the continual
hyper-parameters?
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Task-incremental learning

} } There are more set-up assumptions: how do
O 0.9 0.9 m
o - we select the continual hyper-parameters?
o 0.8 0.8
<>( 0 2 4 e 8 1 a0l 1 100 10 ¢ S g o

“EWC: lambda (log-scale) "7Sk: ¢ (log-scale) Recall: plasticity - sensitivity trade-off
_ Demuin-incrementel learning (algorithms such as EWC, S, etc.)
N L(O) = L,(0) + iF(e — 0% )?
g 0.6 1. — B 2 I\1 A,l
= 10° 102 10* 10° 10° 10 001 1 100 10,00 {

EWC: lambda (log-scale) SI: ¢ (log-scale)

Class-incremental learning

0.21- EWC - None 0.21+4 Sl
Online EWC: - None

6 .
: .205

Average accuracy
o
N
g ( .
o
N
]

195 =< 195
10° 102 10* 10° 10°® 10%° 001 1 100 10,00(
EWC: lambda (log-scale) Sl: ¢ (log-scale)

van de Ven & Tolias, “Three scenarios for continual learning”, arXiv:1904.07734, 2019
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The challenge of formulating desiderata: consensus
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Continual learning desiderata? GUVALILE o contnuaiAl - @2 hessian.A

The challenge of consensus. Is it possible to postulate general desiderata?
Some suggestions (Farquhar & Gal, “Towards Robust Evaluations in Continual Learning”):
A. Cross-task resemblance

Shared output head

B.

C. No test time task labels

D. No unconstrained re-training on old tasks
E.

More than two tasks

And also questions: unclear task boundaries, continuous tasks, overlapping vs. disjoint tasks,
long task sequences, time/compute/memory constraints, strict privacy guarantees...



Continual learning desiderata? GWLLE « conwal &2 hessiana

The challenge of consensus. Is it possible to postulate general desiderata?

Property Definition
Knowledge retention = The model is not prone to catastrophic forgetting.
Forward transfer The model learns a new task while reusing knowledge acquired from previous tasks.
Backward transfer The model achieves improved performance on previous tasks after learning a new task.
On-line learning The model learns from a continuous data stream.
No task boundaries The model learns without requiring neither clear task nor data boundaries.

Fixed model capacity Memory size is constant regardless of the number of tasks and the length of a data stream.

Table 1: Desiderata of continual learning.

Biesialska et al, “Continual Learning in Natural Language Processing: A Survey”, COLING 2020
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Assumptions, assumptions, assumptions...



Recall Lecture 1: continual ML

' open world -
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- B lifelong
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Year

Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
Compass to Promote Research Transparency and Comparability”, ICLR 2022

GWILILE oo continuaAl - &2 hessian.Al

Why are there so many possible
assumptions & things to measure?!

Let’s remind ourselves where they come
from & the reason why we have waited
to discuss evaluation for 7 weeks
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In all honesty, it is presently challenging to
assess continual/lifelong learning systems
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Science and evaluation: are we in a crisis? (Have we always been?)

Why is evaluation challenging in machine learning?

Different/additional dimensions of evaluation in continual/lifelong learning
Why evaluation is even more challenging in continual/lifelong learning

How can we move forward?
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Whether a crisis or not, there is much room for general improvement!
... on the incentives & presentation part ...

1. For all authors...

(a) Do the main claims made 1n the abstract and introduction accurately reflect the paper’s
contributions and scope? [TODO]

(b) Did you describe the limitations of your work? [TODO]
(¢) Did you discuss any potential negative societal impacts of your work? [TODO]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [TODO]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [TODO]
(b) Did you include complete proofs of all theoretical results? [TODO]

Checklist blog: https://neuripsconf.medium.com/introducing-the-neurips-2021-paper-checklist-3220d6df500b , checklist taken from formatting instructions
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Whether a crisis or not, there is much room for general improvement!
... on the empirical experimentation parts ...

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [TODO]

(b) Did you specity all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [TODO]

(¢) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [TODO|

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [TODO]

Checklist blog: https://neuripsconf.medium.com/introducing-the-neurips-2021-paper-checklist-3220d6df500b , checklist taken from formatting instructions
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Whether a crisis or not, there is much room for general improvement!
. and on many other fronts: assets, data, ethics etc.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [TODO]
(b) Did you mention the license of the assets? [TODO]

(¢) Did you include any new assets either in the supplemental material or as a URL?
[TODO]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [TODO]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [ TODO]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [TODO]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [TODO]

(¢) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [TODO]

Checklist blog: https://neuripsconf.medium.com/introducing-the-neurips-2021-paper-checklist-3220d6df500b , checklist taken from formatting instructions
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ML Reproducibility Challenge 2021

Welcome to the ML Reproducibility Challenge 2021 Fall Edition! This is the fifth edition of this event, and
a successor of the ML Reproducibility Challenge 2020 (and previous editions V1, V2, V3), and we are
excited this year to broaden our coverage of conferences and papers to cover nine top venues of 2021,
including: NeurlPS, ICML, ICLR, ACL-1JCNLP, EMNLP, CVPR, ICCV, AAAI and IJCALI.

The primary goal of this event is to encourage the publishing and sharing of scientific results that are
reliable and reproducible. In support of this, the objective of this challenge is to investigate
reproducibility of papers accepted for publication at top conferences by inviting members of the
community at large to select a paper, and verify the empirical results and claims in the paper by

reproducing the computational experiments, either via a new implementation or using code/data or other

information provided by the authors.

https://paperswithcode.com/rc2021



Dataset sheets & model cards

Dataset sheets

Movie Review Polarity

Thumbs Up? Sentiment Classification using Machine Learning Techniques

Motivation

For what purpose was the dataset created? Was there a specific task
in mind? Was there a specific gap that needed to be filled? Please provide
a description.

The dataset was created to enable research on predicting senti-
ment polarity—i.e., given a piece of English text, predict whether
it has a positive or negative affect—or stance—toward its topic.
The dataset was created intentionally with that task in mind, fo-
cusing on movie reviews as a place where affect/sentiment is fre-
quently expressed.’

Who created the dataset (e.g., which team, research group) and on
behalf of which entity (e.g., company, institution, organization)?

The dataset was created by Bo Pang and Lillian Lee at Cornell
University.

Who funded the creation of the dataset? If there is an associated grant,
please provide the name of the grantor and the grant name and number.

Funding was provided from five distinct sources: the National
Science Foundation, the Department of the Interior, the National
Business Center, Cornell University, and the Sloan Foundation.

Any other comments?
None.

Composition

What do the instances that comprise the dataset represent (e.g., doc-
uments, photos, people, countries)? Are there multiple types of in-
stances (e.g., movies, users, and ratings; people and interactions between
them; nodes and edges)? Please provide a description.

The instances are movie reviews extracted from newsgroup post-

these are words that could be used to describe the emotions of john sayles’
characters in his latest , limbo . but no , i use them to describe myself after
sitting through his latest little exercise in indie egomania . i can forgive many
things . but using some hackneyed , whacked-out , screwed-up * non * -
ending on a movie is unforgivable . i walked a half-mile in the rain and sat
through two hours of typical , plodding sayles melodrama to get cheated by a
complete and total copout finale . does sayles think he’s roger corman ?

Figure 1. An example “negative polarity” instance, taken from the file
neg/cv452 tok-18656.txt.

exception that no more than 40 posts by a single author were in-
cluded (see “Collection Process” below). No tests were run to
determine representativeness.

What data does each instance consist of? “Raw” data (e.g., unpro-
cessed text or images)or features? In either case, please provide a de-
scription.

Each instance consists of the text associated with the review, with
obvious ratings information removed from that text (some errors
were found and later fixed). The text was down-cased and HTML
tags were removed. Boilerplate newsgroup header/footer text was
removed. Some additional unspecified automatic filtering was
done. Each instance also has an associated target value: a positive
(+1) or negative (-1) sentiment polarity rating based on the num-
ber of stars that that review gave (details on the mapping from
number of stars to polarity is given below in “Data Preprocess-
ing”).

Is there a label or target associated with each instance? If so, please
provide a description.

The label is the positive/negative sentiment polarity rating derived
from the star rating, as described above.

“Datasheets for Datasets”, Gebru et al, CACM 2021
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Specify motivation, composition, collection
process, pre-processing, cleaning,
labeling, distribution, maintenance, ethical
considerations etfc.



Dataset sheets & model cards

Model cards

Model Card - Smiling Detection in Images

Model Details

e Developed by researchers at Google and the University of Toronto, 2018, v1.

e Convolutional Neural Net.

e Pretrained for face recognition then fine-tuned with cross-entropy loss for binary
smiling classification.

Intended Use

¢ Intended to be used for fun applications, such as creating cartoon smiles on real
images; augmentative applications, such as providing details for people who are
blind; or assisting applications such as automatically finding smiling photos.

e Particularly intended for younger audiences.

e Not suitable for emotion detection or determining affect; smiles were annotated
based on physical appearance, and not underlying emotions.

Factors

¢ Based on known problems with computer vision face technology, potential rel-
evant factors include groups for gender, age, race, and Fitzpatrick skin type;
hardware factors of camera type and lens type; and environmental factors of
lighting and humidity.

e Evaluation factors are gender and age group, as annotated in the publicly available
dataset CelebA [36]. Further possible factors not currently available in a public
smiling dataset. Gender and age determined by third-party annotators based
on visual presentation, following a set of examples of male/female gender and
young/old age. Further details available in [36].

Metrics

e Evaluation metrics include False Positive Rate and False Negative Rate to
measure disproportionate model performance errors across subgroups. False
Discovery Rate and False Omission Rate, which measure the fraction of nega-
tive (not smiling) and positive (smiling) predictions that are incorrectly predicted
to be positive and negative, respectively, are also reported. [48]
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Specify model detalls, intended use,
human-centric application intent,
organization developing the model;
considerations on deployment, limits, and
ethics; descriptions of metrics, model
version, license etc.



Reporting limitations
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Types
of Limitations

Probes to Uncover Limitation

Examples

Fidelity

How faithfully do the formalism of the problem,
the technical approach, and the results map onto
the motivating problem that drives the work?

The training data was labeled even

though similar real-world data is not usu-
ally labeled.

Generalizability

To what extent do the results hold in different con-
texts? How broadly or narrowly should the claims
in the paper be interpreted? How broadly can the
technical approach be applied across domains?

Model was developed for a particular sce-
nario and does not apply to other scenar-
10s or contexts.

Robustness

How sensitive are the results to minor violations
of assumptions (e.g., small tweaks to mathematical
model, metrics, hyperparameters)?

Adding a small amount of noise in the
data dramatically reduces accuracy.

Reproducibility

To what extent could other researchers reproduce
the study?

Researchers provide details on parame-
ter settings used but cannot share code
or data because they are proprietary:.

Resource
Requirements

Is the technical approach computationally effi-
cient? Does it scale? What other resources does

the technical approach require?

Technical approach requires specialized
hardware.

Value Tensions

Are some values (e.g., novelty, simplicity, high
accuracy, low false positive rate, ease of imple-
mentation, interpretability, efficiency) sacrificed
in pursuit of others?

The model has high accuracy on a test

dataset but is a black box and hard to
interpret.

Vulnerability to Mis-
takes and Misuse

How sensitive are the results to human errors,
unintended uses, or malicious uses?

System operators are liable to misinter-
pret results without sufficient training.

Smith et al, “REAL ML: Recognizing, Exploring, and Articulating Limitations of Machine Learning Research”, FAccT 2022

Limitations

A sign of bad research or
an exercise of self-

reflection?
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Important note: previous efforts are largely yet
to develop for continual/lifelong learning
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Compass to Promote Research Transparency and Comparability”, ICLR 2022



CLEVA-Compass

Inner compass level (star plot):
indicates related paradigm inspiration & continual
setting configuration (assumptions)

0% e,
Task Agnostic ¥

S

[ ] OSAKA (Caccia et al., 2020) [ | FedWelT (Yoon et al., 2021) [ ] A-GEM (Chaudhry et al., 2019)
| | VCL (Nguyenetal., 2018) | | OCDVAE (Mundt et al., 2020b;a)

Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
Compass to Promote Research Transparency and Comparability”, ICLR 2022



CLEVA-Compass

Inner compass level (star plot):
indicates related paradigm inspiration & continual
setting configuration (assumptions)

Inner compass level of supervision:

“rings” on the star plot indicate presence of
supervision. Importantly: supervision is individual
to each dimension!
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Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
Compass to Promote Research Transparency and Comparability”, ICLR 2022
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Inner compass level (star plot):
indicates related paradigm inspiration & continual
setting configuration (assumptions)

Inner compass level of supervision:

“rings” on the star plot indicate presence of
supervision. Importantly: supervision is individual
to each dimension!

Outer compass level:
Contains a comprehensive set of practically
reported measures

[ ] OSAKA (Caccia et al., 2020) [ | FedWelT (Yoon et al., 2021) [ ] A-GEM (Chaudhry et al., 2019)
| | VCL (Nguyenetal., 2018) | | OCDVAE (Mundt et al., 2020b;a)

Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
Compass to Promote Research Transparency and Comparability”, ICLR 2022



CLEVA-Compass

Inner compass level (star plot):
indicates related paradigm inspiration & continual
setting configuration (assumptions)

Inner compass level of supervision:

“rings” on the star plot indicate presence of
supervision. Importantly: supervision is individual
to each dimension!

Outer compass level:

Contains a comprehensive set of practically
reported measures

—> Encourages transparency, summarizes incentives,

& promotes comparability in a compact visual form

[ ] OSAKA (Caccia et al., 2020) [ | FedWelT (Yoon et al., 2021) [ ] A-GEM (Chaudhry et al., 2019)
| | VCL (Nguyen et al., 2018) | | OCDVAE (Mundt et al., 2020b;a)
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We’ll continue to talk about scenarios + assumptions next
week, when we transition to the “open world”

Primarily: what if we don’t know what to test on?



