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Week 8: Open world learning -
learning & prediction in the presence of the unknown



Recall sequences so far
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We’ve discussed various ways to measure + assumptions,
but so far it was always clear what to test on
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Kemker et al, “Measuring Catastrophic Forgetting in Neural Networks”, AAAI 2018

0.52

i
R PN &)
(@) o0 -

<
NN
N

Mean Accuracy (%)

ImageNet

Top-1 =61.47 £0.3
-@- VAAL

=== Core-set

-4 Ensembles w. VarR

== Random

-#- DBAL
4§~ MC-Dropout

10 15 20 25 30
% of Labeled Data
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Recall: the tasks we considered GUWLLE o comaal & nessianal £ fr

What if we don’t know the boundary & aren’t constrained on our testing examples?

Generation
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Lesort et al, “Generative Models from the perspective of Continual Learning”, IICNN 2019




Recall: the tasks we considered CWILIE oAl & hessianal (7

What if we don’t know the boundary & aren’t constrained on our testing examples?

What if future or unrelated data is in the test set?

Task 3 Task 5
first second first second first second first second first second
class class class class class class class class class class

Figure 1: Schematic of split MNIST task protocol.

van de Ven et al, “Three types of incremental learning”, Nature M| 2022



Recall: distribution shifts
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Recht et al, “Do ImageNet Classifiers Generalize to ImageNet?”, ICML 2019
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Recall: natural data distributions
are complex & can easily shift!

Performance loss even happens if we
recollect another “test set” with the
same instructions a second time!
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Recall our active learning

Noisy oracle

assumptions: 30
28
e Qracle is infallible: 3 25
the teacher/labeler does not S
Kk iIstakes! :
make mistakes! g 20
-
§ 18
 Pool belongs to task: 15
. . . -.- VAAL (£ = 10%) + VAAL (£ = 20%) VAAL (£ = 30%)
we will cover this in our lecture on 2 P i Fommim Mo
“learning and the unknown” 10 15 20 25 30 35 40

% of Labeled Data

Sinha et al, “Variational Adversarial Active Learning”, ICCV 2019
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Perspectives to address these challenges
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1. Known knowns:
Do you have an intuition what these 4 categories could represent?
2. Known unknowns:

3. Unknown unknowns:

4. Unknown knowns:
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More than known vs. unknown GWILLE e comsal &2 hessiana

1. Known knowns:

Examples belong to the distribution from training set was drawn. Assumption of an
accurate & confident prediction.

2. Known unknowns:

3. Unknown unknowns:

4. Unknown knowns:
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More than known vs. unknown GWILIE e comnsAl &2 hessiana

1. Known knowns:

Examples belong to the distribution from training set was drawn. Assumption of an
accurate & confident prediction.

2. Known unknowns:

Unknown examples where models are not confident or uncertainty is high. Can be
optionally "negatively” labelled examples used in training.

3. Unknown unknowns:

4. Unknown knowns:
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More than known vs. unknown GWILIE e comnsAl &2 hessiana

1. Known knowns:

Examples belong to the distribution from training set was drawn. Assumption of an
accurate & confident prediction.

2. Known unknowns:

Unknown examples where models are not confident or uncertainty is high. Can be
optionally "negatively” labelled examples used in training.

3. Unknown unknowns:

Unseen instances belonging to unexplored & unknown data distributions. Predictions
generally overconfident & by definition false.

4. Unknown knowns:
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More than known vs. unknown GWILIE e comnsAl &2 hessiana

1. Known knowns (or simply knowns):
Examples belong to the distribution from training set was drawn. Assumption of an
accurate & confident prediction.

2. Known unknowns:
Unknown examples where models are not confident or uncertainty is high. Can be
optionally "negatively” labelled examples used in training.

3. Unknown unknowns:
Unseen instances belonging to unexplored & unknown data distributions. Predictions
generally overconfident & by definition false.

4. Unknown knowns:

Usually not considered: we know the concept but choose to treat it as unknown (willful
ignorance?) or our ML system cannot represent the concept + structure altogether
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Three types of approaches GWILLE o conrwal &2 hessiana

What do you think: how can we solve our challenge?



Three types of approaches GWALIE e connwiAl &2 hessian.

e CAP [131]
e OpenMax [67]

Meta- e Mahalanobis [132]
e OWR-Survey [15]

recognition e CROSR [133]

Anomalies in predictions: *Lotent b EVT o
The unsuspecting angle, where out-of-distribution are
hopefully separable through anomalous output values.

OPEN SET Prior o Universum Inference [136]
e Confidence Calibration [139]
REC OG- KI\OWI- e Objectosphere Loss [141]
e SCM [142]
edge e Discrepancy Loss [140]

Incorporating prior knowledge: NITION
The intuitive idea to include “background” or “non-
example” data population explicitly.

o Softmax-Confidence [14]
e TCM-kNN [143]

Thr(.esh- e Hinge Loss [144]

olding | e Confidence [145]

e ODIN [148]

Predictive | ® OCGAN [150]
Anoma-

Open Set recognition: lies

The more formal approach ensures that we only rely on Sr——

predictions from our “covered space”; we create bounds. e |+ D Gt i 157

e Predictive Uncertainty under

Dataset Shift [153]
- >

Figure from “A Wholistic View of Deep Neural Networks: Forgotten Lessons and the
Bridge to Active and Open World Learning”, Mundt et al, Neural Networks, 2023
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Predictive anomalies:
the unfortunate part of the story

Disclaimer: I’ll use my many figures from our papers for convenience,
without trying to imply that we discovered these phenomena



Recall lecture 1: overconfidence GU/LLE = cosal & hessiana
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Dataset classification e
T Recall the quantitative example:

MNIST

KMNIST

CIFAR1O0

CIFAR100

SVHN

AudioMNIST 1

Train a neural network classifier on a
dataset (here fashion items)

2. Log predictions for arbitrary other datasets

3. Observe that majority of misclassifications
happen with large output “probability”
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Classification confidence



Overconfidence & uncertainty =~ GUW/LLE o comnwAl & hessiana
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Unfortunately uncertainty is not a necessarily a “fix”

Standard neural network classifier

FashionMNIST (trained)
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Average over 50 MCD stochastic forward passes

Dataset classification
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Figure from Mundt et al “Open Set Recognition Through Deep Neural Network Uncertainty, Does Out-of-Distribution Detection Require Generative Classifiers?”, ICCVW 2019
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Unfortunately uncertainty is not a necessarily a “fix”
& it get’s even harder when we try to select a threshold
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Ovadia & Fertig et al, “Can you trust your model’s uncertainty?” Evaluating predictive uncertainty under dataset shift”, NeurlPS 2019



Overconfidence & gen. models GWILLE ol & hessiana

Unfortunately uncertainty is not a necessarily a “fix”
& it get’s even harder when we try to select a threshold
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Figure from Mundt et al, “Unified Probabilistic Deep Continual Learning Through Open Set Recognition and Generative Replay”, Journal of Imaging, Volume 8, Issue 4, 2022
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Overconfidence is not exclusive to discriminative models
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Figure from Mundt et al, “Unified Probabilistic Deep Continual Learning Through Open Set Recognition and Generative Replay”, Journal of Imaging, Volume 8, Issue 4, 2022
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Overconfidence is not exclusive to discriminative models
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Nalisnick et al, “Do Deep Generative Models Know What They Don’t Know”, ICLR 2019
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Including prior knowledge: an alternative?
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The Intuitive idea

Take a look at the below Materials in Context (MINC) dataset: what do you notice?
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Bell & Upchurch et al, “Material Recognition in the Wild with the Materials in Context Database”, CVPR 2015
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The Intuitive idea

An intuitive idea is to incorporate everything we know that does not belong to our task(s)
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Bell & Upchurch et al, “Material Recognition in the Wild with the Materials in Context Database”, CVPR 2015
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In essence: include background class / “non-examples” that aren’t of interest

Key questions:

* How to implement the loss: many many conceivable concelivable
(Disclaimer: possibly uncountable amount of works)

e “what part of the universum is useful” (“Inference with the universum”, Weston et al, ICML 2006)
e "what are we expected to see during prediction later”™? (Noise? Other concepts? Etc.)
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1. We could let our predictions (classifier) explicitly follow a uniform distribution for “out” data
(Kimin Lee et al, “Training confidence-calibrated classifiers for detecting out-of-distribution samples”, ICLR 2018)

mgin *:Pin(i,@\) [ — log P9 (y — ?/J\‘i)] + :B 4:Pout(x) [KL (U (y) H P9 (y|x))]
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Calibration: some examples GUVALILE o contnualAl - @2 hessian.A

1. We could let our predictions (classifier) explicitly follow a uniform distribution for “out” data
(Kimin Lee et al, “Training confidence-calibrated classifiers for detecting out-of-distribution samples”, ICLR 2018)

min *:Pin(’i,@\) [ — log Py (y — ij\‘ﬁ)] T ,B 4:Pm;t(x) [KL (U (y) H Py (y‘x))]

2. We could calibrate our outputs, e.g. by scaling a temperature parameter later
(Liang et al, “Enhancing the reliability of out-of-distribution image detection in neural networks”, ICLR 2018)

exp (fi(x)/T)
> =1 exp (f;(x)/T)

Si(x; T') =




Calibration: some examples GUILIE o contnuaAl &2 hessian.Al

1. We could let our predictions (classifier) explicitly follow a uniform distribution for “out” data
(Kimin Lee et al, “Training confidence-calibrated classifiers for detecting out-of-distribution samples”, ICLR 2018)

mgin *:Pin(i,@\) [ — log P9 (y — @\Ii)] + 6 4:Pout(x) [KL (U (y) H P9 (y‘x))]

2. We could calibrate our outputs, e.g. by scaling a temperature parameter later
(Liang et al, “Enhancing the reliability of out-of-distribution image detection in neural networks”, ICLR 2018)

exp (fi(x)/T)

Sz'(il); T) _— N
2_j=1xp (f;(x)/T)

3. And many other versions to modify our loss, e.g.: Je(z) =

{— log S¢(x) if z € D/, is from class c
(Dhamija et al, “Reducing network agnostophobia”, NeurlPS 2018)

C
-1 21 log Sc(z) ifx € D,



Background & Objectosphere GUAILILE o continiAl - &2 hessian.A

We could also think about encouraging features to be zero for OOD data

(a) Softmax (b) Background (c) Objectosphere
Figure 1: LENET++ RESPONSES TO KNOWNS AND UNKNOWNS. The network in|(a)|was only trained

to classify the 10 MNIST classes (D..) using softmax, while the networks in:( b )\and [( c)‘added NIST letters [15]
as known unknowns (D},) trained with softmax or our novel Objectosphere loss.

Dhamija et al, “Reducing Network Agnostophobia”, NeurlPS 2018
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What do you think are the up & downsides so far?
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We may need a different approach: as the world grows more “open” we move from
known unknowns to unknown unknowns. Our two perspectives only handle the former

Face Open Set

Multi-class Classification , , Detection s
Verification Recognition

Closed o, Open
Training and Claimed One class, Multiple known
testing samples identity, everything else classes, many
come from possibility for  in the world is unknown
known classes impostors negative classes

Scheirer et al, “Towards Open Set Recognition”, TPAMI 2012
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Open set recognition & explicit bounds



Intuition behind open space

Intuitively: we could take into account
distances from the known data points
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Intuition behind open space

Intuitively: we could take into account
distances from the known data points

Example 1 : we could make assumptions like
every class being Normal distributed & then
calculate distances to our existing data
points, e.g. Mahalanobis distance

100

Out-of-distribution: TinylmageNet

B Baseline
ODIN

l 50 8 Mahalanobis
CIFAR-10 CIFAR-100  SVHN " . - -
Datasets 5K 10K 20K 30K 40K 50K

@ Softmax @ Mahalanobis 100

O
o

oo
o
|

Test set accuracy (%)

— Z f(xi), B = Z Y (F(xi) = fie) (F(xi) — ie) '

€ iwy;=c C 1:Y;=cC

70 -

M(x) =max — (f(x) — ) E7'(f(x) — fe)

¢ (E.g. Kimin Lee et al, “A Simple Unified Framework for Detecting Out-of-

Distribution Samples and Adversarial Attacks”, NeurlPS 2018)



Intuition behind open space

Intuitively: we could take into account
distances from the known data points

Example 2: we could fit another parallel plane
in an SVM, for a reject option, based on the
support set with large distances

Negatives

Positives

<
O Ea
&

Generalization

“ ™ Specialization

Scheirer et al, “Towards Open Set Recognition”, TPAMI 2012



Formalizing open space/sets

Intuitively: open space Is what we have not
covered with known data

Formally: (see e.g. “Learning and the Unknown”, Boult
et al, AAAI 2019)

For a recognition function function f over

space & & a union of balls with radius r
that includes all known training examples:

O =3 —VUey B(x;)

@WL&@ o0 Continual Al @2 hessian.Al

??
[

i Original
o Closed Space?

°?

“Learning and the Unknown”, Boult et al, AAAI 2019

™\

Open Space

77

??



Formalizing open space/sets

For a recognition function function f over

space 2 & a union of balls with radius r
that includes all known training examples:

Can now define open space risk as a relative
measure of open space to the full space,
but see the survey for the full math

For now: the aim would be to decay the
probability away from supporting evidence

@WL&@ oo Continual Al @2 hessian.A
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Monotonically

decreasing prob.

Scheirer et al,

Positive training data

“Probability Models for Open Set Recognition”, TPAMI 2014
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In other words, we could fit a distance based model (following the radius
idea), e.g. here based on the mean activations of training data in a deep net

MODEL
Real Image
Fooling
OpenSet
Hammerhead Shark

MODEL |
Real Image |
Fooling |

OpenSet

Great White Shark
MODEL|

Real Image |
Fooling |

OpenSet

Scuba Diver
MODEL

Real Image

Fooling
OpenSet

Adversarial Scuba Diver (from Hammerhead)

I P m T 1

Sharks Whales Dogs Fish Baseball

Bendale & Boult et al, “Towards Open Set Deep Networks”, CVPR 2016
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In other words, we could fit a distance based model (following the radius
idea), e.g. here based on the mean activations of training data in a deep net

Algorithm 1 EVT Meta-Recognition Calibration for Open Set

Deep Networks, with per class Weibull fit to 7 largest distance to

mean activation vector. Returns libMR models p; which includes

parameters 7; for shifting the data as well as the Weibull shape and

scale parameters:k;, A;.

Require: FitHigh function from libMR

Require: Activation levels in the penultimate network
layer v(x) = v1(x)...vn(x)

Require: For each class j let S; ; = v;(z; ;) for each cor-
rectly classified training example z;

:forg=1...Ndo

1:
2: Compute mean AV, y; = mean;(S; J)

3: EVTFitp; = (7j,K5, ;) = Fltngh(”S —5,m)
4

5

17"

. end for
: Return means p; and ibMR models p;

Bendale & Boult et al, “Towards Open Set Deep Networks”, CVPR 2016



Bounds with extreme values GWILIE o coninwaAl @2 hessian.a

In other words, we could fit a distance based model (following the radius
idea), e.g. here based on the mean activations of training data in a deep net

BUt WhICh diStribUtion ShOUId we Choose? Algorithm 1 EVT Meta-Recognition Calibration for Open Set

Deep Networks, with per class Weibull fit to n largest distance to
mean activation vector. Returns libMR models p; which includes

parameters 7; for shifting the data as well as the Weibull shape and
scale parameters:x;, A;.

Require: FitHigh function from libMR

e \We are mainly interested in the extreme

' Require: Activation levels in th 1t k
distances, as we want to make a eql“;yf;v (;t)witlgln(x;vii ;Ex) e penultimate networ
deCiSiOn Of When tO rejeCt Require: For each class j let S; ; = v;(z; ;) for each cor-

rectly classified training example z; ;.

: 1: fory=1...N do
 Extreme value theory may provide an > Compute mean AV, 11; = mean; (S; ;)
answer for us 431 endEt:'(X-T Fitp; = (75, k5, A;) = FitHigh([[.S; —u; [, n)
5: Return means p; and libMR models p;

Bendale & Boult et al, “Towards Open Set Deep Networks”, CVPR 2016



Bounds with extreme values

Extreme value theory is interested in the
probability of events that are more extreme
than any previously observed

Regardless of the overall distribution, if the
data Iis bounded, EVT tells us that sampling
the tail/the extrema away from the median
of our distribution results in an EVT
distribution: Weibull, Gumbel or Frechet
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Outlier likelihood - 500 data points

- Tallsize: 10
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We can use the cumulative distribution
function (CDF) to either reject right away,

Algorithm 2 OpenMax probability estimation with rejection of
unknown or uncertain inputs.

Require: Activation vector for v(x) = vy (z),...,vn(x)
because we exceed our extremely Require: means 1 ; and libMR models p; = (7;, A, K;)
Require: o, the numer of “top” classes to revise
observed distances, or use the value to 1 %et;(i)lz argso;t(vj(w));Let wj =1
2:1orz=1,...,ax0o0

modify our prediction score

B ( lz—7g(4) >K8(i)
_ o—1 As(i
Ws (i) () =1— e (%)

3:
(Referred to as OpenMax here) 4: end for
5: Revise activation vector 9(z) = v(X) o w(X)
6: Define 0p(x) = ), vi(x)(1 — wi(x)).
" ]5 Iy B e‘ﬁ’j (x)
(y — j|X) o Zi\;o e‘.,i(x)

8: Lety* = argmax,; P(y = j|x)
9: Rejectinput if y* == 0or P(y = y*|x) < €

Bendale & Boult et al, “Towards Open Set Deep Networks”, CVPR 2016
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OpenMax seem to improve a lot!
But why is there still so much room for improvement?

1.0 FashionMNIST (trained) 1.0
MNIST
KMNIST
CIFAR1O
CIFAR100D
SVHN
AudioMNIST

o0

0.6

FashionMNIST (trained)
MNIST
0.2 KMNIST
CIFAR10
CIFAR100
SVHN
0.0 AudioMNIST

Percentage of dataset outliers
Percentage of dataset outliers

U6 R 1.0 1.2 0.0 02 0.4 0.6 0.8
Dataset entropy Weibull CDF outlier rejection prior Q;
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Do we need generative models on top?



Overconfidence & gen. models G oo coninaAl &2 hessian.al {7 b

Recall earlier: overconfidence is not exclusive to discriminative models,
but what if it’s only about predictive values again?

0.0005 - ' | | | ' ' ' : - 0.00030 0.00040
Bl ImageNet-TRAIN B CIFAR10-TRAIN 000035 B CIFAR10-TRAIN
00004 - S ImageNet-1EST ) 0.00025 [ CIFAR10-TEST | CIFAR1O-TEST
! CIFAR1O-TEST B SVHN-TEST 0.00030 SVHN-TEST
CIFAR100-TEST 0.00020
0.0003 - - R
BN SVHN-TEST
0.00015 0.00020
0.0002 - _
0.00015
0.00010
0.00010
0.0001 - -
0.00005
0.00005
0.0000 | | | | | | [ | i~ 0.00000 - 0.00000 :
~180068-16008-14008-12008-10000-8000—-6000 —4000—2000 O ~25000 —~20000 ~15000 ~10000 ~5000 0 —~16000 —14000 —12000 —10000 —8000 —6000 —4000 —2000 O
log p(X) log p(X) log p(X)

Glow PixelCNN VAE

Nalisnick et al, “Do Deep Generative Models Know What They Don’t Know”, ICLR 2019
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We could formulate an OpenMax variant based on a VAE, based on generative factors

Algorithm 1 Open set recognition calibration for deep

variational neural networks. A Weibull model fit of tail-

________ Necoder size 1) 1s conducted to bound the per class approximate pos-

" EVT open set terior. Per class ¢ Weibull models p, with their respective
, meta-recognition ¢ shift 7., shape x. and scale \. parameters are returned.

N py(x|z)

j || PRX Require: Trained encoder gg(z|x) and classifier pg(y|2)
X @—> Z —Yy— 1> —> X Require: Classifier probabilities pe(y|z) and samples

from the approximate posterior z(aq(i)) ~ qo(z|xz®)

\ é e for each training dataset example (%)
0p — > X ?9_(?[){)% __ S,p fl(};l Zz Require: For each class c, let §) = (ar: ) for each
L , mﬁn(:; ) correctly classified training example x. 1)
Shared Encoder & 0, I E ™Y | Classifier c forc=1...Cdo B |
Latent Embeading ’ Get per class latent mean S. = mean(S")

l:

2: c

3: Weibull model p, = Fit Weibull (||S. — S.||,n)
4

. Return means S and Weibull models p

Mundt et al “Open Set Recognition Through Deep Neural Network Uncertainty, Does Out-of-Distribution Detection Require Generative Classifiers?”, ICCV Statistical Deep Learning Workshop 2019
& Mundt et al, “Unified Probabilistic Deep Continual Learning Through Open Set Recognition and Generative Replay”, Journal of Imaging, Volume 8, Issue 4, 2022
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It may indeed be a question of the learned representations

Standard classifier p(y|x) with OpenMax “Open”VAE approach: p(x,y)

1.0 1.0

(V)
508 = 0.8
5 5
o o
‘a‘) -&5 FashionMNIST (trained)
90 0.6 W 0.6 MNIST
- % KMNIST
E o CIFAR1O
o ) CIFAR100
gOA D 0.4 SVHN
© - AudioMNIST
QC) FashionMNIST (trained) E
o MNIST 8
J0.2 KMNIST E’ 0.2

CIFAR10

CIFAR100

SVHN

0.0 AudioMNIST 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 0.4 0.6 0.8 5

Weibull CDF outlier rejection prior Q; Weibull CDF outlier rejection prior Q;

Mundt et al “Open Set Recognition Through Deep Neural Network Uncertainty, Does Out-of-Distribution Detection Require Generative Classifiers?”, ICCV Statistical Deep Learning Workshop 2019
& Mundt et al, “Unified Probabilistic Deep Continual Learning Through Open Set Recognition and Generative Replay”, Journal of Imaging, Volume 8, Issue 4, 2022
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As an alternative/auxiliary approach, we could also take a
direct look at the functions that we use in our model
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Hypothesis: specific functions in our ML models, P - :
like ReLLU in NNs are (at least in parts) the culprit ,
- they always produce high confidence far away Positive samples
Negative samples
from the data (Hein et al, “Why ReLU networks yield high 1
confidence predictions far away from the training data and how M 1
to mitigate the problem”, CVPR 2019) ) ' LH LI L’ ’
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An alternative/auxiliary view GWILIE o coninwaAl - @2 hessian.A

Hypothesis: specific functions in our ML models, ol - S
like ReLLU in NNs are (at least in parts) the culprit ,
- they always produce high confidence far away Positive samples
Negative samples
from the data (Hein et al, “Why ReLU networks yield high 1
confidence predictions far away from the training data and how M W
to mitigate the problem”, CVPR 2019) ) ' LH LI L’ ’
3
=Tent (6=1)  f(z;6) = max(0, — |z])
Alternative idea: use functions that are bounded = lont (9=0.9) 2
and try to determine their “extent” based on the amrrel priiored
1
observed data (Rozsa & Boult, “Improved Adversarial
Robustness by Reducing Open Space Risk via Tent | yavi NN

Activations”, 2019) | a 'b ' c
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An alternative/auxiliary view

Hypothesis: specific functions in our ML models,
like ReLLU in NNs are (at least in parts) the culprit
- they always produce high confidence far away
from the data (Hein et al, “Why ReLU networks yield high

confidence predictions far away from the training data and how
to mitigate the problem”, CVPR 2019)

confidence
100%

90%

B80%

- T0%

60%

S50%

- 60%

Alternative idea: use functions that are bounded
and try to determine their “extent” based on the

observed data (Rozsa & Boult, “Improved Adversarial

Robustness by Reducing Open Space Risk via Tent
Activations”, 2019)

70%

80%

90%

100%

Figure produced by Quentin Delfosse, illustrating ReLU vs Tent activations
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Open world learning: combining ideas
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In retrospect: although there have been increments, the types of
continual learning we have seen so far were indeed in a closed world

Training phase

Parameter Learning Phase Incremental Learning Phase

Testing phase

Known Categories

Closed Set Testing

Unknown Categories

4

Open Set Testing

Figure from CVPR16 “Statistical Methods for Open Set Recognition” by Scheirer &
Boult, https://www.wjscheirer.com/misc/openset/cvpr2016-open-set-part3.pdf



https://www.wjscheirer.com/misc/openset/cvpr2016-open-set-part3.pdf

Open world learning GWILIE o cortnaAl - 2 hessian.Al

Open world learning tries to “puzzie together” the pieces we have seen so far

"An effective open world recognition system must efficiently perform four tasks:
detect unknown, choose which points to label for addition to the model, label the
points, and update the model” (Boult et al, “Learning and the Unknown”, AAAI 2019)

q \ ——|Label Data ~ - .
e World with Knowns (K) & — e LU: Labeled
Unknowns Unknowns (UU) e NU: Novel Unknowns e K: Known
: “ - Unknowns ’ ) r
>~ Recognize [ Detectas — J ™ Incremental " Scale
L

as Known Unknown - " earning 3

Bendale & Boult ,“Towards Open World Recognition”, CVPR 2015
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Open world learning tries to “puzzie together” the pieces we have seen so far

"An effective open world recognition system must efficiently perform four tasks:
detect unknown, choose which points to label for addition to the model, label the
points, and update the model” (Boult et al, “Learning and the Unknown”, AAAI 2019)

Scalability
. Problem Difficulty Miller et al. [[CRA’18]
Liu+ ) Ristin+ A Miller et al. [ICRA"19)]
(CVPR’13) S -(C_\{P-R']:Zl-) ' - Dhamija et al. [WACV"20]
Deng+«. Mensink+ | : Detection Y Ye
’ H :
| (NIPS’11) (PAMI"13) n : Shmelkov et al,, [ICCV’17] Ours: Open-world Scheireret al. [TPAMI 14]
“Marszaleks 0 This Paper Chen et al. [[JCNN"19] & Detection ‘Bendale et al. [CVPR'16]
T , n H 1 Hao etal. [ICME'19] @0 T Neal et al., [CVPR'18]
: (ECCV 08), Yeh+ gl i+ ‘MCVFR'O7:) T Yoshihashi et al. [CVPR19]
: - . ) . ’
SChEiI"eI’+ PAMI' 13' - (CVPR’OS) : ﬂ H : . . Zenke et al [[MLR']?] Pereract al. [CVPR 20]
: = Incremental Classification T i IC\./!;R‘I'/'] - - - >
) k. . 7 i ebuffi et al. . p .
Jain+ (ECCV'14) @ o’ Learning Chaudhry et al. [[CLR’18] ...~ Open Set Learning
:. | P, Mallya et al. [CVPR™18| .~
N . . N -
. 1, Scheirer+(PAMI’14) g Aljundi et al. [ECCV 18]/_/
f ";"’ Rajasegaran et al. INeurlPS"l}- -

Bendale and Boult |CVPR’15]
Open Set

Learning

Incremental Learning

Bendale & Boult ,“Towards Open World Recognition”, CVPR 2015 Joseph et al, “Towards Open World Object Detection”, CVPR 2021
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We can try to puzzle the pieces together now. As it is very much a cutting-
edge research frontier, let’s talk about it more in the “frontiers” lecture

Figure 2: Approach Overview:

Label object :

27 ? @ °? ? | & et | @ @ O Operv-sat classes Top row: At each incremental
B ? ? . " ? - : :

kY . @ ; > @ 5 Unknowns e 5 : known objects (New)  ]earning step, the model 1den-
£ & Detection ' £ Unknown objects tifies unknown objects (denoted
% O ? ? O ? Y'g Model Q ? O © Kknown objects (Old) ¢ . J ( .

S : 5, by ‘?’), which are progressively
2 - >t

labelled (as blue circles) and
added to the existing knowledge
base (green circles). Bottom
row: Our open world object de-

(N ;’ﬂ | tection model identifies poten-
| E ' Lyeg tial unknown objects using an
| energy-based classification head

Prediction
e T and the unknown-aware RPN.
Further, we perform contrastive

Rol Head

w
y

Contrastive Clustering

Auto-labelling Unknowns

Open-world Object Detector

~Y  |[E====

S L .

= s learning in the feature space to

2 learn discriminative clusters and

QL . .

B C’) can flexibly add new classes in a
g @

continual manner without forget-
ting the previous classes.

Potential unknown object $ % Microwave

|| Detections __: Ground-truth boxes () Prototypes - — — Attraction Repulsion

Joseph et al, “Towards Open World Object Detection”, CVPR 2021
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Ending on some open questions & a disclaimer:

 Note the “towards” in many of the paper titles

e There is much to be done still: what about avoiding forgetting in addition now?
 Naturally, evaluation gets even more complicated now!

e |t's no longer a question of ML algorithms, perhaps it already was a systems question
beforehand, but now it definitely is
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What about natural corruptions, adversarial attacks etc.?

+ .007 X =
: Vel (0, 2:9)  sign(V,J(6,2,y)
“panda” “nematode” “g1ibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Goodfellow et al, “Explaining and Harnessing Adversarial Examples”, ICLR 2015
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What about natural corruptions, adversarial attacks etc.?

Contrast

Defocus Blur Frosted Glass Blur

Elastic

—

Architecture Corruption Robustness

1 ® mCE
130 ® Relative mCE

o 0
120 - o
110 - o
o . o T o
=X 1004 @ N\eo .. VGG-11
90 4 AlexNet \ResNet-SO

SqueezeNet 1.1 ). :
80 - ResNet-18
VGG-19+BN
60 65 70 75

Architecture Accuracy (%)

Figure 3: Robustness (mCE) and Relative mCE
IMAGENET-C values. Relative mCE values sug-

gest robustness 1n itself declined from AlexNet to
ResNet. “BN” abbreviates Batch Normalization.

Hendricks & Dietterich, “Benchmarking Neural Network Robustness to Common Corruptions and Perturbations”, ICLR 2019
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