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|s scale all we need?!

THEDRIVE TO BIGGER Al MODELS

The scale of artificial-intelligence neural networks is growing exponentially, as measured
by the models’ parameters (roughly, the number of connections between their neurons)*.

® Language @ Image generation  ® Vision @ Other
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**Sparse’ models, which have more than one trillion parameters
but use only a fraction of them in each computation, are not shown. onature

Source: Adapted from Our World in Data, and from J. Sevilla et al. Preprint at
https://arxiv.org/abs/2202.05924 (2022).

o Research Director at Deepmind says all we need now is scaling

Nando de Freitas & @Nando... - 4 t.
Someone’s opinion article. My opinion:
It’s all about scale now! The Game is
Over! It’s about making these models
bigger, safer, compute efficient, faster at
sampling, smarter memory, more
modalities, INNOVATIVE DATA, on/
offline, ... 1/N

NEURAL

thenextweb.com
DeepMind's new Gato Al makes me

fear humans will never achieve AGI
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Humans learn continually! Why shouldn’t ML models?

At the least, lifelong learning may be The Promise
one pathway to more human-like R
Intelligence

At the most, its one pathway towards e o
strong, more general artificial ";
Intelligence

“Intelligence is the ability to adapt to change.”
- ' - Stephen Hawking

Slide adapted from our AAAI-23 Continual Causality Tutorial, Cooper & Mundt



Despite many great achievements of current systems,

few, If any, truly can learn & predict over time

“It's about making the models T , g The Premise
bigger, safer, compute efficient, ‘ y -
faster at sampling...”

o4 CRASH INVOLVING SELF-DRIVING WAYMO

But narrow models aren’t robust,
suffer from incomplete & biased
datasets, don’t adapt to novel
situations

Can we really capture everything 4
U pfrO nt? Tesla Totaled oﬁ 405 A

CULVER CITY

e

Slide adapted from our AAAI-23 Continual Causality Tutorial, Cooper & Mundt



The Problems!

Why are we not there & what to do - Course Overview

Day 1: The Present

Static Datasets & Re-use Data is fed as input and

the algorithm configured :
Preparing data is a with the required PUbl'S.h the prepared
. crucial step and involves parameters. A percent of expgrlment as @ we.b
dentify the problem to building workflows to the data can be utilized to service, so applications
be solved and create a clean, match and blend train the model. can use the model

clear objective. the data.

Define Collect Prepare Select

objective Data Data Algorithm

Collect data from Depending on the
hospitals, health problem to be solved and
Insurance companies, the type of data, an
social service agencies, appropriate algorithm
police and fire dept. will be chosen.

Integrate

Model

The remaining data is utilized to test
the model for accuracy. Depending
on the results, improvements can be
performed in the “Train model”
and/or “Select Algorithm” phases,
iteratively.

Figure from https://www.congrelate.com/get-workflow-machine-learning-images/



The Problems!

Why are we not there & what to do - Course Overview

Task A Task B Task C

Day 2: The Past
Forgetting & Memory

Figure from Kudithipudi et al, “Biological underpinnings for lifelong learning machines”,
Nature Machine Intelligence (4), 2022




The Problems!

Why are we not there & what to do - Course Overview

Day 3: From Past to Future

Memory & Growth
Hippocampus Neocortex
Episodic -
Memory Generalization
Storage,
retrieval,

Fast learning replay Slow learning
of arbitrary of structured
information knowledge

Figure from Parisi et al, “Continual Lifelong Learning with Neural Networks:
A Review”, Neural Networks 113, 2019



The Problems!
Why are we not there & what to do - Course Overview

small & easy
- Subset
T
Q1 Curric Day 4: The Future
Training process Data Selection &

Learning Curricula

Figure from Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021



The Problems!
Why are we not there & what to do - Course Overview

Day 5: The Unknown
Open World Learning &
Evaluation




Motivation: A step back - what is machine learning?




The static ML workflow

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure F If its performance at
tasks in I, as measured by F, improves with experience E”.

Machine Learning, T. M. Mitchell, McGraw-Hill,1997



ML recap: train - test splits

“The result of running the machine learning algorithm can be expressed as a
function. The precise form of the function is determined during the training
phase, also known as the learning phase, on the basis of the training data.

Once the model is trained it can then determine the identity of new instances,
which are said to comprise a test set. The ability to categorize correctly new
examples that differ from those used for training is known as generalization”.

Pattern Recognition and Machine Learning, C. M. Bishop, Springer 2006, page 2



ML recap: error/loss & learning

Figure 1.3 The error function (1.2) corre-
sponds to (one half of) the sum of
the squares of the displacements
(shown by the vertical green bars)
of each data point from the function

y(z, w).

Pattern Recognition and Machine Learning, C. M. Bishop,
Springer 2006, example on polynomial curve fitting: intro page 6



ML recap: under & overfitting

Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in
Figure 1.2.

Pattern Recognition and Machine Learning, C. M. Bishop, Springer 2006,
example on polynomial curve fitting: page 7



ML recap: under & overfitting

Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-

1 - ' - ' pendent test set for various values

—o6— Training P of M.
—6— Test

“Intuitively, what is happening is that the
05} - more flexible polynomials with larger values

Erwms

of M are becoming increasingly tuned to
the random noise on the target values™.

Pattern Recognition and Machine Learning, C. M. Bishop,
Springer 2006, example on polynomial curve (over-)fitting in
the introduction on page 8



ML recap: under & overfitting

This picture is still very much the same in the “deep learning era”

— - 'Tralning error
nderfitting zone | Overfitting zone ——  Qeneralization error

Error

0 Optimal Capacity

Capacity
Deep Learning, Goodfellow, Bengio, Courville, MIT Press 2016,

Machine Learning Basics chapter, page 112.



What do you think are the goals of ML?




The static ML workflow: goals

“Of course, when we use a machine learning algorithm, we do not fix the parameters
ahead of time, then sample both datasets. We sample the training set, then use it
to choose the parameters to reduce training set error, then sample the test set.

The factors determining how well a ML algorithm will perform are its ability to:
1. Make the training error small.

2. Make the gap between training and test error small”.

Deep Learning, Goodfellow, Bengio, Courville, MIT Press 2016,

Machine Learning Basics chapter, page 108.



The static ML workflow: goals

So Iis ML all about finding a large dataset & a right capacity model?

)
-

—
o))

ot

Optimal capacity (polynomial degree
[—
-

_ O
S

Number of training examples

Deep Learning, Goodfellow, Bengio, Courville, MIT Press 2016,

Machine Learning Basics chapter, page 114.



How do you think datasets should be acquired?




Static datasets: controlled

Small scale, but (some) controlled acquisition parameters

Image Object pose Illumination direction
number || Frontal | 22.5° | 22.5° || Frontal | =~ 45° ~ 45 °
right left from top | from side

1 X X
2 X X
3 x x Image #1 Image #2
4 X X
5 X X )
6 X X Wy, |
7 X X
8 X X
9 X X

Image #4 Image #5

Table 3: The labeling of images within each scale in the KTH-TIPS database.

Hayman et al, “On the significance of real-world conditions for material classification”, ECCV 2004
& Fritz, Hayman et al, “The KTH-TIPS database”, technical report 2004



Static datasets: large scale

A big focus of modern dataset has been on large scale & diversity

Candle Oyster Cannon _Spider Web Skewdriver HatcheR Pool Table Leopard

_ Amount of Texture
Object Scale

Lizard  Stocking  Mushroom Strawberry Ant  Red Wine

Number of Instances Color Distinctiveness

Jigsaw Puzzle Foreland Lion Bell

Deformability e —

——

Russakovsky & Deng et al, “ImageNet Large Scale Visual Recognition Challenge, IJCV 2015, (challenges since 2010)



Static datasets: large scale

An d tryi n g to en S u re Images annotated with a few object classes only Images fully annotated

Fos: ILSVRC Neg: Additional images

reasonable train, validation, = | i | | 2dtonst | g | o i using

- | images for the images, eneric aueries
. detection object mostly from ?a dded ig 2014)
test splits through complex classes Flickr
288,661 total 109,364 total 60,658 total
collection processes onal
P ILSVRC 2012 | | Images with target ?f';:“;{i‘:"(:m:if‘“
val, test for object occupying . _ . ( g
the detection | ™| 2 50% of image generic queries (e,
object classes area . . -
Australian zoo”)
| Y
77% (15,522 val and 30,901 test) 23% (4,599 val and 9,251 test)

Russakovsky & Deng et al, “ImageNet Large Scale Visual Recognition Challenge, IJCV 2015, (challenges since 2010)



What do you think:
should our primary goal be the solution to such benchmarks?




Static models

NASNet-A-Large

o] i B g vz A very big emphasis has then been

‘*@ T on “solving” such benchmarks

Caffe-ResNet-101 VGG-19_BN

Bm,m.pﬁm @ ResNet-34 VGG-13_BN .I I

‘ VGG-19
VGG-16

o models & compute got bigger and

SE- ResNel
DenseNet-201@) ‘enseNet 161

.ResNet 50 Q

O
DualPathNet-68

DenseNet-121
® NASNet-A-Mobile

DenseNet-169 VGG-16_BN

75 -

@ MobileNet-v2 VGG-11_BN

ImageNet Is a prime example, where

70 - ResNet-18

o ©
MobileNet-v1 v

® shuffleNet VGG-11

.GoogLeNet

Top-1 accuracy [%]

more accurate over time

88 /77

SqueezeNet-v1.1
‘e SqueezeNet-v1.0

|‘ AlexNet
0 5 10 15 20 25
Operations [G-FLOPs]

N\
AN

™M 5M 10M 50M 75M 100M 150M

Bianco et al, “Benchmark Analysis of Representative Deep Neural Network Architectures”, IEEE Access, 2018



Data and model centrism

% " | Dataset Size
B At the same time, it’s often “either”
3 models or data
f : MOdeI Size Inception ResNot-g
g 10 s For example, ImageNet has
: VGG ResNet-50
AlexNet O I Tals I
o O — remained largely static* over time

. |aPu Pover * (excluding some concerns over fair
& o000 representation)

2012 2013 2014 2015 2016

Sun et al, “Revisiting Unreasonable Effectiveness of Data in Deep Learning Era”, ICCV 2017



Data and model centrism

CiB B Or conversely, a model is picked (here
a transformer) and datasets are
extended

()
-

Example from ImageNet to the (non-
public) JFT 300M & JFT-3B

ImageNet finetune error rate [%]

¢ * e
~@
\‘&!
E=0.09 +0.26(C +0.01)~03
10 - "~.
0 100 10t 10t 10

Compute (TPUv3 core days)

Zhao et al, “Scaling Vision Transformers”, preprint 2021



Let’s start moving beyond static datasets + models




Can we just iterate?

\oNS P
e\\e‘s\o 'epa,e

Q\é\& o@@
§ 2 Turns out that this will be
§  MachineLearning ~ F much harder than you
S Workflow S
S g perhaps expect now!

>
/%O x\)\.

Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
Compass to Promote Research Transparency and Comparability”, ICLR 2022



Why? From static ML workflow ...

Versioning: stage versions according to Data: amount, redundancy vs. diversity,
prediction evaluation and deployment cleaning, preprocessing
s o0y, Individual
\Z
é{bQ o@@ .
N gquestions
Prediction: test set evaluation, failure _98 % Model: architecture, inductive bias, dis-
modes and robustness .g criminative/generative, functions, parameters
. . =
& Machine Learning c
g Workflow 5
% ~
Y
/%O x\)'\q?
4 o>
Deployment: model saving, platform olabq \ epO\l‘a Training: loss function, optimizer, hyper-
compatibility, serving and cloud parameters, convergence

Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
Compass to Promote Research Transparency and Comparability”, ICLR 2022



... to continual/lifelong ML ...

Versioning: stage versions according to Data: amount, redundancy vs. diversity, C O N tl N U al
prediction evaluation and deployment cleaning, preprocessing
dependencies
discretized vs. continuous versions, back- data selection and ordering, task similarity,
ward compatibility ons Py, noisy streams, distribution shifts .
N Pare & synergies
) Q@
&
Prediction: test set evaluation, failure g %’ Model: architecture, inductive bias, dis-
modes and robustness .g (Continual) 2 criminative/generative, functions, parameters
& Machine Learning C
evolving test set, inherent noise and 2 Workflow 8 model extensions, task-specific parameter
perturbations, open world scenario '-'% () identification
Y
% N4
%% \'x
Q
Deployment: model saving, platform 40/050 \ epO\‘\eo Training: loss function, optimizer, hyper-
compatibility, serving and cloud parameters, convergence

optimizer states and meta-data, distributing

catastrophic forgetting, knowledge transfer
continuous updates, communication cost stlﬁa

tion, selective updates, online

Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
Compass to Promote Research Transparency and Comparability”, ICLR 2022



The first In a chain of questions:
can we transfer our models?




Early definition: lifelong ML

Definition - Lifelong Machine Learning - Thrun 1996:
“The system has performed N tasks. When faced with the (N+1)th task, it
uses the knowledge gained from the N tasks to help the (N+1)th task.”

“Is Learning The n-th Thing Any Easier Than Learning the First?” (NeurlPS 1996) & “Explanation
based Neural Network Learning A Lifelong Learning Approach”, Springer US, 1996



What is knowledge in a machine learning system?




Never-ending (language/image) learner

Knowledge is more than params

Pokiop Compur | Momtr . Koypoard | Televlon
(0) Seed Images }1)‘.‘.\ —(1)1- - ’(1)' "
(2) St (2) E_m (2) -

5/ o) ’ o B - 1) S ~
Bl e e | | T Desktop Computer (1)
5 | Deiep Come
Dby . e (NELL) Ran 24/7 from 2010-2018
s g * Accumulated over 50 million candidate
: - -

5 Detccors eAl “beliefs” by reading the web

@ Add New Instances
(Secuon 33)

e e B = B e Relational database

* Monitor is a part of Desktop Computer

§3 HEEERIT e Facts: barley is a grain
* Beliefs: sportUsesEquip (soccer, balls)

Keyboard

Desktop Computer
Monitor
Television

ceccccccccaae Secccccc -

“Towards an Architecture for Never-Ending Language Learning”, Carlson et al, AAAI 2010
“NEIL: Extracting Visual Knowledge form Web Data”, X. Chen et al, ICCV 2013
“Never-Ending Learning”, T. Mitchell et al, AAAI 2015



Early definition: lifelong ML

Definition - Lifelong Machine Learning - Thrun 1996:
“The system has performed N tasks. When faced with the (N+1)th task, it
uses the knowledge gained from the N tasks to help the (N+1)th task.”

* |s data accumulated? Stored?
 What are the ways to “help” the (N+1)th task?
 What is knowledge? What is a task?

“Is Learning The n-th Thing Any Easier Than Learning the First?” (NeurlPS 1996) & “Explanation
based Neural Network Learning A Lifelong Learning Approach”, Springer US, 1996



Transfer learning

Learning Process of Transfer Learning
L RL RUEL RS 4.' '
| i
3 nmnae
Source Tasks Target Task vivieta Knowledg
L § ;
( AL 2 &L 4
SR
LAJ .

@ @ : e Transfer

Leamung Process of Traditional Machine Learning

Knowledge Knowledgg
/ Transfer ‘\/“ Transfer ¢ §%

“A Survey on Transfer Learning”, Pan and Yang, IEEE “A Comprehensive Survey on Transfer Learning’,

4
[ ]

Transactions on Knowledge & Data Engineering, 2010 Zhuang et al, Proceedings of IEEE, 2020

“Help the (N+1th) task!”: Assume that we already have “knowledge”/ a
model based on initial task(s) -> the essence of transfer learning



What types of data shifts can you think of?




Dataset shifts

Original Data Covariate Shift Label Shift Concept Shift

A

No Data Shift p(x) changes p(y) Changes p(y | X) changes

(a) Original data (b) Covariate shift (c) Label shift (d) Concept shift

Figure from “Understanding Dataset Shift and Potential Remedies”, Vector Institute Technical Report, 2021
See also: “Dataset Shift in Machine Learning” book, MIT Press 2009



Transfer learning: definition

Definition - Transfer Learning - Pan & Yang 2009:
“Given a source domain D, and learning task 7 , a target domain D, and

learning task g, transfer learning aims to help improve the learning of the
target predictive function f,( .) in D, using the knowledge in D, and 7 ,, where

Di#D;or T #+39;.

e Domain D
e Jask I

e Source S
e Target T

“A Survey on Transfer Learning”, Pan & Yang, IEEE Transactions on Knowledge and Data Engineering 22(10), 2009



Transfer learning: definition

Definition - Domain & Task - Pan & Yang 2009:

"Given a specific domain, D = { ', p(x)}, a task consists of two components: a
label space Y and an objective predictive function f() (denoted by T = {Y, ()},
which is not observed but can be learned from the training data, which consist
of pairs {x™ y™Y, where x" € X and y"W € YV.”

 Domain D: a pair of data distribution p(x) and corresponding feature space
e Task g find a function f() (to map to labels in the case of supervision)

 Where generally &' # 2,01 py(x) # py(x)

“A Survey on Transfer Learning”, Pan & Yang, IEEE Transactions on Knowledge and Data Engineering 22(10), 2009



Transductive transfer

Definition - Transductive Transfer Learning - Pan & Yang 2009:
“Given a source domain D, and learning task 7 , a target domain D, and

learning task g ., transductive transfer learning aims to help improve the
learning of the target predictive function f,( .) in D, using the knowledge in D

and g, where Do+ D, and T ,= T 7.

» Feature spaces between the source and target are different . £ 2.
 Feature spaces between source and target are the same, but p(x) # p(x)

* Frequently encountered as domain adaptation or sample selection bias

“A Survey on Transfer Learning”, Pan & Yang, IEEE Transactions on Knowledge and Data Engineering 22(10), 2009



Inductive transfer

Definition - Inductive Transfer Learning - Pan & Yang 2009

“Given a source domain D, and learning task 7 , a target domain D, and
learning task ., inductive transfer learning aims to help improve the learning of
the target predictive function f,( .) in D using the knowledge in D, and T

where § + T ;.

(Labeled) data points are required to “induce” the target predictive function

“A Survey on Transfer Learning”, Pan & Yang, IEEE Transactions on Knowledge and Data Engineering 22(10), 2009



What do you think are the central questions & measures
of success for transfer learning?




Transfer: questions & goals

(Some) central questions

1. What to transfer: some knowledge is domain or task specific or may be more general/
transferable

2. When to transfer: when does transfer help or when does it even hurt?
3. How to transfer: algorithms to actually include, transfer/combine knowledge

(Some) central objectives

1. Improved loss/more accurate function in direct comparison to learning just on the target
2. Accelerate learning

3. Reduce data dependence (of target)



Examples of transfer learning approaches




Transductive transfer

Early approaches transfer by
identifying the amount that a
specific hyperplane helps to
separate the data into
different classes (& then
reweighting/reinitializing).

Source training data Target training data

Feature 2

“Discriminability-Based Transfer between Neural Networks”, L. Y. Pratt, NeurlPS 1992



Transductive transfer

A domain adaptation example through feature transformation

Source domain Augmented Feature Space Target domain

Fig. 1. Samples from different domains are represented by different features, where red crosses, blue strips, orange triangles and green cir-
cles denote source positive samples, source negative samples, target positive samples and target negative samples, respectively. By using two
projection matrices P and Q, we transform the heterogenous samples from two domains into an augmented feature space.

“Learning with augmented Features for Supervised and Semi-Supervised Heterogeneous Domain Adaptation”, Wen Li et al, TPAMI 2014



“Gradient-Based Learning Applied to Document Recognition”, LeCun et al, Proceedings of the IEEE, 1998

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28
rr CS: layer F6 layer OUTPUT

32x32 S2: f. maps
120

6@ 14x1
Convolutions Subsampling Convolutions Subsampllng Full connectlon

FuII coanectlon Gaussnan connections

Class scores

I

TRAINABLE CLASSIFIER MODULE

t

Feature vector

I

FEATURE EXTRACTION MODULE

}

Raw input

“ImageNet Classification with Deep Convolutional Neural Networks”, Krizhevsky et al, NeurlPS 2012



input

input

0000000 0000000 ©000000 (OOOOOOU

\/

\J

\J

\/

\J

(Inductive) ImageNet transfer

\/

\/

0000000 0000000 00000090 (OOOOOOV

labels
A

labels
B

wes @ SPlit Imagenet into 2 sets of 500
classes: A and B

.. * Lock” different sets of layers/
representations & randomly
Initialize upper remaining layers

B3B
and

sp e Alternatively: continue training/
fine-tuning transferred layers

A3B
and

A3B"

“How transferable are features in deep neural networks”, Yosinski et al, NeurlPS 2014



(Inductive) ImageNet transfer

5: Transfer + fine-tuning improves generalization

0.64}
3: Fine-tuning recovers co-adapted interactions

2: Performance drops
due to fragile
co-adaptation

o
o
N

4: Performance
drops due to
representation

Top-1 accuracy (higher is better)
o
(@)
o

specificit
0.58} P y
0.56
054 i 5 3 7 5 ; 7

Layer n at which network is chopped and retrained

“How transferable are features in deep neural networks”, Yosinski et al, NeurlPS 2014

2. B-B: copied from B and frozen
+ random rest trained on B

3. B-B+: copied features are
allowed to adapt/fine-tune

4. A-B: transfer from A to B with
frozen layers

5. A-B+: transferring + fine-tuning
from Ato B



(Inductive) ImageNet transfer

Training images Source task label

Convolutional layers Fully-connected layers % African elephant

s J Wall clock

1 : Feature
learning

Green snake

8 Yorkshire terrier

.
—

2 : Feature
transfer

—

3 : Classifier » FCa —> FECb —>
learning 4096 or
6144-dim ...
9216-dim 4096 or vector

vector 6144-dim
vector

New adaptation

Training images Sliding patCheS |ayers trained
Target task . ontargettask Target task labels

“Learning and Transferring Mid-Level Image Representations using
Convolutional Neural Networks”, Oquab et al, CVPR 2014



The role of embeddings:
few-shot to one-shot transfer




The role of embeddings

(0327, 0.427, .] —

[0.881, 0.974, ..)

[0.691, 0.257, ..]

A randomized set of one million images is fed through the  The activations are fed through UMAP to reduce them to We then draw a grid and average the activations that fall
network, collecting one random spatial activation per two dimensions. They are then plotted, with similar within a cell and run feature inversion on the averaged

image. activations placed near each other. activation. We also optionally size the grid cells
according to the density of the number of activations

that are averaged within.

“Activation Atlas”, Carter et al, Distill 2019



Special cases of transfer: few-shot learning

Compute prototype c as the mean

vector of each class with
parametrized embedding

X
.}<: function of a support set of
labelled examples

(a) Few-shot (b) Zero-shot

Figure 1: Prototypical networks in the few-shot and zero-shot scenarios. Left: Few-shot prototypes

cr are computed as the mean of embedded support examples for each class. Right: Zero-shot Given 2 d ISt ance funCtiOn d
prototypes ¢, are produced by embedding class meta-data v. In either case, embedded query points ’

are classified via a softmax over distances to class prototypes: py(y = k|x) o exp(—d(fs(x), ck)). c| aSSify accordi ng to softmax

over distances to the prototypes

“Prototypical Networks for Few-shot Learning”, Snell et al, NeurlPS 2017 N em beddlng Space

See also “Object Classification from a Single Example Utilizing Class relevance Metrics”, M. Fink,
NeurlPS 2004 & “One-shot Learning of Object Categories”, Fei-Fei et al, TPAMI 2006



Special cases of transfer: one-shot learning

“We say that a set of classes is y > 0 separated with respect to a distance
function d if for any pair of examples belonging to the same class
{(xy,0), (x1,0)}, the distance d(x,, x;) Is sSmaller than the distance between

any pair of examples from different classes {(x,, e), (x,, g) }by at least y:
d(x;,x1) < d(xy, x5) — 7.

1. Learn from extra sample a distance function d that achieves y separation

2. Learn a nearest neighbor classifier, where the classifier employs d

“Object Classification from a Single Example Utilizing Class relevance Metrics”, M. Fink, NeurlPS 2004
See also “One-shot Learning of Object Categories”, Fei-Fei et al, TPAMI 2006



Why is transfer challenging?




Transfer challenges

How would you separate this data with a set of hyperplanes? (Try 3)




Transfer challenges

1.0
Feature 1 Feature 1

Figure 2: Two examples of hyperplane sets that separate
training data in a small network.

“Direct Transfer of Learned Information Among Neural Networks” , L. Y. Pratt et al, AAAI 1991



Not intuitive If transfer works

<—Training from scratch:
e Alexnet: 66.98 %
e VGG-A: 70.45%
e VGG-D: 70.61%

Transfer learning
Architecture Source Accuracy [%]
“Meta-learning Convolutional Neural Architectures for Multi-target Concrete Defect Classification
with the Concrete Defect Bridge Image Dataset”, Mundt et al, CVPR 2019
Alexnet ImageNet 62.87
- P 1 VGG-A ImageNet 66.35
L @ 5 B VGG-D ImageNet 65.56
. s .-. Densenet-121  ImageNet 57.66
Alexnet MINC 66.50
F VGG-D MINC 67.14

Brick Carpet Ceramic Fabnc Foliage
“Material Recognition in the Wild with the Materials in Context Database, CVPR 2015”



Simplicity bias

Representations are biased in ways that we don’t anticipate: simplicity

Simplicity Bias in Neural Networks (NNs)
/
NN boundary ‘

Feature ¢,

- LiNear
= Complex

Feature ¢-

“The Pitfalls of Simplicity Bias in Neural Networks”, Shah et al, NeurlPS 2020



Representation Bias

Representations are biased in ways that we don’t anticipate: texture bias

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4%  Indian elephant 71.1%  tabby cat 639% Indian elephant
103% indri 17.3% grey fox 264%  indri

82% black swan 3.3% Siamese cat 96% black swan

“ImageNet-trained CNNS are biased towards texture”, Geirhos et al, ICLR 2019



Clever Hans predictors

Representations are biased in ways that we don’t anticipate: confounders

Horse-picture from Pascal VOC data set
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“Unmasking Clever Hans Predictors”, Lapuschkin et al, Nature Communications 2019



Adversarial features

Representations are biased in ways that we don’t anticipate: adversarial

Robust dataset

good standard accuracy
good robust accuracy

good standard accuracy
bad robust accuracy

Training image

frog
Non-robust dataset

“Adversarial Examples are not Bugs, they are Features”, llyas et al, NeurlPS 2019



Back to the earlier definition.
It said "lifelong learning”! Not “transfer learning”




Early definition: lifelong ML

Definition - Lifelong Machine Learning - Thrun 1996:
“The system has performed N tasks. When faced with the (N+1)th task, it
uses the knowledge gained from the N tasks to help the (N+1)th task.”

* We have looked primarily at (positive) forward transfer today

* |Let us look at training & backward transfer (or forgetting) next

“Is Learning The n-th Thing Any Easier Than Learning the First?” (NeurlPS 1996) & “Explanation
based Neural Network Learning A Lifelong Learning Approach”, Springer US, 1996



Later definition: lifelong ML

Definition - Lifelong Machine Learning - Chen & Liu 2017:
“Lifelong Machine Learning is a continuous learning process. At any time point, the learner
performed a sequence of N learning tasks, 5,,9,, ..., - These tasks can be of the same type or

different types and from the same domain or different domains. When faced with the (N+1)th task
I v..(Which is called the new or current task) with its data D,,, ,, the learner can leverage past

knowledge in the knowledge base (KB) to help learn 7, ,. The objective of LML is usually to
optimize the performance on the new task 7, ,, but it can optimize any task by treating the rest of

the tasks as previous tasks. KB maintains the knowledge learned and accumulated from learning
the previous task. After the completion of learning 7, ,, KB is updated with the knowledge (e.qg.

intermediate as well as the final results) gained from learning 7 ,,, ,. The updating can involve

Inconsistency checking, reasoning, and meta-mining of additional higher-level knowledge.”

“Lifelong Machine Learning”, Chen & Liu, Morgan Claypool, 2017



