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The future: picking what comes next

Who decides what comes next? A stream? A human? The model? How?

Generation
Task

T
Go

T

Training data “E

Lesort et al, “Generative Models from the perspective of Continual Learning”, IJCNN 2019




Active learning
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Figure from Mundt et al, “A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten
Lessons and the Bridge to Active and Open World Learning, Neural Networks 160, 2023




When querying new data, what are some assumptions
& considerations on set-up we can make?




Active learning
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Figure from Mundt et al, “A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten
Lessons and the Bridge to Active and Open World Learning, Neural Networks 160, 2023



Majority of “traditional” active learning
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What techniques to query data can you think of?




Again, a small tangent:

discriminative or generative models?

Discriminative models could allow for natural ways to assess “novelty” of a
new example -> But caution: overconfidence phenomena (tomorrow)

Generative models learn about the data distribution

-> But caution: our parameters only reflect the distribution seen so far!
(do we make use of a pool that is always available?)

We will see that the choice also depends on the set-up assumption!

See Zhang & Oles, “A Probability Analysis on the value of Unlabeled Data for Classification Problems”, ICML 2000



Active learning perspectives

Version space reduction

reduce the set/space of possible hypotheses  : £ — % by removing the
ones that are inconsistent with the data

Uncertainty & heuristics

use the predictions, or maybe even better, uncertainty in the predictions






Version space (Mitchel 1978)

 Assume that there exist hypotheses consistent
with the labeled data points »: & - %
version space: VS(D) = {h € H|cons(h,D)}

Figure from https://en.wikipedia.org/wiki/File:Version_space.png in the public domain



https://en.wikipedia.org/wiki/File:Version_space.png

Version space (Mitchel 1978)
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Figure from https://en.wikipedia.org/wiki/File:Version_space.png in the public domain
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Version space (Mitchel 1978)

 Assume that there exist hypotheses consistent © o © o ©
with the labeled data points 1 : & - % o °% o

GB o

version space: VS(D) = {h € H|cons(h,D)} —

o Specific hypotheses: cover positive examples
& as little remaining feature space o+ "

 General hypotheses: cover positive examples &
as much of the remaining feature space °0  0°

* Version space: represented as green rectangles o o o0

Figure from https://en.wikipedia.org/wiki/File:Version_space.png in the public domain
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Version space reduction

“Generalization as Search”, mitchell 1982

We could query such that the version
space: VS(D) = {h € H|cons(h,D)} ,1.€.
the set of consistent hypotheses,
quickly gets reduced

W

Figure from presentation of “Ensembles of Classifiers™ by Evgueni Smirnoy,
slides available at: https://slideplayer.com/slide/10075963/




Active learning with support vector machines (SVM)

There are some models in which we
can do this. Why?

* Hyperplane chosen to maximize
margin to closest instances: the

support vectors

Tong & Koller, “Support Vector Machine Active Learning with
Applications to Text Classification”, JMLR 2001



Active learning with SVM version space

=
A s

Version space Is set of hyperplanes
(or could be redefined through vectors W)

Figure from presentation of “Ensembles of Classifiers™ by Evgueni Smirnoy,
slides available at: https://slideplayer.com/slide/10075963/



Active learning with SVM version space
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Tong & Koller, “Support Vector Machine Active Learning with Labeled Training Set Size

Applications to Text Classification”, JMLR 2001



Reducing the set of consistent hypotheses does not
regard the evaluation metric




An alternative to version space (the ML way)

We could also take a look at the machine learning loss and include points that would:
* most reduce the expected error

 most change the current model



An alternative to version space (the ML way)

We could also take a look at the machine learning loss and include points that would:
* most reduce the expected error

 most change the current model

“First-order Markov active learning aims to select a query x*, such that when the

query Is given label y* and added to the training set, the learner trained on the

resulting set D+(x*,y*) has lower error than any other x”

Roy & McCallum, “Toward Optimal Active Learning through Monte Carlo Estimation of Error Reduction”, ICML 2001)
(See also Cohn et al, “Active learning with statistical models”, JAIR 4, 1996)



The simplest (?) approach .

Version spaces & expected error reduction are hard (& heavy to compute).

Simple heuristics are thus popular



The simplest (?) approach

Version spaces & expected error reduction are hard (& heavy to compute).
Simple heuristics are thus popular, but have lots of caveats (tomorrow)

1. Create an 1nitial classifier

2. While teacher 1s willing to label examples

(a) Apply the current classifier to each unlabeled example

(b) Find the b examples for which the classifier is least certain of class membership
(c) Have the teacher label the subsample of b examples

(d) Train a new classifier on all labeled examples

Lewis & Gale, “A Sequential Algorithm for Training Text Classifiers”, ACM-SIGIR
conference on research and development in information retrieval 1994



Query by committee .

We could maximize information gain between multiple models: ensembles



Query by committee

We could maximize information gain between multiple models: ensembles

Query by a committee of two
Repeat the following until n queries have been accepted

1. Draw an unlabeled input z € X at random from D.

2. Select two hypotheses h, hy from the posterior distribution. In other words,

pick two hypotheses that are consistent with the labeled examples seen so
far.

3. If hi(z) # ha(z) then query the teacher for the label of z, and add it to
the training set.

Seung et al, “Query by Committee”, COLT 1992, and Freund, Seung et al, “Information, Prediction, and Query by Committee”, NeurlPS 1992



Query by committee

We could maximize information gain between multiple models: ensembles

Query by a committee of two
Repeat the following until n queries have been accepted

1. Draw an unlabeled input z € X at random from D.

2. Select two hypotheses h, hy from the posterior distribution. In other words,

pick two hypotheses that are consistent with the labeled examples seen so
far.

3. If hi(z) # ha(z) then query the teacher for the label of z, and add it to
the training set.

Could also be interpreted as reducing the version space across models

Seung et al, “Query by Committee”, COLT 1992, and Freund, Seung et al, “Information, Prediction, and Query by Committee”, NeurlPS 1992
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After applying

(b)

(a) Standard Neural Net

Srivastava et al, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 15, 2014



Monte Carlo Dropout (Gal et al, ICML 2016)
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(a) Standard Neural Net

Srivastava et al, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 15, 2014

(b) After applying dropout.

 Make use of dropout: randomly
turning off units in a model

 Bayesian interpretation:
Bernoulli distribution on the
parameters

e Stochastic forward passes to
get variation in predictions



Monte Carlo Dropout (Gal et al, ICML 2016)

100

98

MCD could be useful as an

approximation to using multiple
model based ensembles

The acquisition function can still

- BALD

- Var Ratios
-~ Max Entropy
=== Mean STD
~= Random

Iﬂ OUtpUt COﬂfIdenCe etC % 100 200 300 400 500 600 700 800 900 1000

be entropy, standard deviation

Gal et al, “Deep Bayesian Active Learning with Image Data”, ICML 2017



Random is hard to beat.
Why aren’t these approaches a lot better?

Figure 2: An illustration of when uncertainty sampling
can be a poor strategy for classification. Shaded poly-
gons represent labeled instances (L), and circles repre-
sent unlabeled instances ({/). Since A 1s on the decision
boundary, it will be queried as the most uncertain. How-

ever, querying B 1s likely to result in more information
about the data dS d WhOlC. Settles & Craven, "An Analysis of Active

Learning Strategies for Sequence
Labeling Tasks”, EMNLP 2008



There are more challenges with data that is “far away”
(tomorrow). Let us first complete the picture




Active learning perspectives

Version space reduction

reduce the set/space of possible hypotheses i : & - % by removing the ones that are
inconsistent with the data

Uncertainty & heuristics

use the predictions, or maybe even better, uncertainty in the predictions for the queries

Core sets & representation learning

Maximize distribution coverage instead of reducing the possible set of hypotheses



Representations & core sets

What if we allow to use & even train on the unlabelled pool?

Assumption: a “teacher” information source is allowed, e.g. generative model

We wouldn’t necessarily get a lot of advantage of generative models in active
learning, unless we also train on the (unlabelled pool)

We could then also make use of core sets, as discussed for memory



Representations & core sets

We could now try to:

* Pre-cluster our unlabelled data pool

 Compute core sets of the unlabelled data pool

* | earn a generative model & representations on

the unlabelled data pool

H.T. Nguyen et al, “Active Learning
Using Pre-clustering”, ICML 2004

data samples Xi,..., Xp,
,?Jl ----- Ye
Initial clustering
(section 3.1)
Ciy..., Cx
Estimating p(ylk)

(section 3.2)

\

Calculating p(ylx)
eq. (5)

Selecting and labeling an
unlabeled sample, eq. (30)

Cluster adjustment
(section 3.4)

CK+1y---, Ck




Representations & core sets

CIFAR10
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Sinha et al, “Variational Adversarial Active Learning”, ICCV 2019



Intermediate summary: assumptions & trade-offs




Intermediate summary: active learning perspectives

Version space reduction (Hypotheses)

reduce the set/space of possible hypotheses i : & - % by removing the ones that are
inconsistent with the data

Uncertainty & heuristics (Novelty)

use the predictions, or maybe even better, uncertainty in the predictions for the queries

Core sets & representation learning - accessing the entire pool (Diversity)

maximize distribution coverage instead of reducing the possible set of hypotheses



Intermediate summary: active learning perspectives

Techniques & (some of) their assumptions

* Version space reduction » Set of hypotheses is clear



Intermediate summary: active learning perspectives

Techniques & (some of) their assumptions
* Version space reduction » Set of hypotheses is clear
* Minimum confidence * No overconfidence phenomenon and out-of-

 Maximum entropy distribution/task data



Intermediate summary: active learning perspectives

Techniques & (some of) their assumptions

* Version space reduction » Set of hypotheses is clear

* Minimum confidence * No overconfidence phenomenon and out-of-
 Maximum entropy distribution/task data

 Model “uncertainty” (output variability) * Accurate uncertainty everywhere

 Ensembles/query by committee * Training of multiple models



Intermediate summary: active learning perspectives

Techniques & (some of) their assumptions

* Version space reduction * Set of hypotheses is clear

 Minimum confidence * No overconfidence phenomenon and out-of-
 Maximum entropy distribution/task data

 Model “uncertainty” (output variability) * Accurate uncertainty everywhere
 Ensembles/query by committee * Training of multiple models

* Representation learning on the pool e Upfront training of entire pool (no data stream)

* Core sets (access + computational expense)



There Is another aspect to consider:
the informativeness of data + difficulty to learn




small & easy

- Subset

— T

Q1

Curriculum Learning

what Is “easy” & what Is a

“harder” subset/dataset?

And what is the difference

to informativeness?

Q; Qr =P Curriculum

Training process

Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021



Let’s start with an intuitive example: Ranking language

model trained with vs without curriculum on Wikipedia

“Error” is log of the rank of the next
word (within 20k-word vocabulary).



Let’s start with an intuitive example: Ranking language

model trained with vs without curriculum on Wikipedia

“Error” Is log of the rank of the next
word (within 20k-word vocabulary).

1. The curriculum-trained model
skips examples with words outside
of 5k most frequent words

2. Then skips examples outside 10k
most frequent words and so on



Let’s start with an intuitive example: Ranking language

model trained with vs without curriculum on Wikipedia

“Error” Is log of the rank of the next
word (within 20k-word vocabulary). K

= curriculum

= = no-curriculum

1. The curriculum-trained model
skips examples with words outside

log(rank next word)

of 5k most frequent words

2. Then skips examples outside 10k

million

most frequent words and so on 0 300 000 1500 ypdates

Bengio et al, “Curriculum Learning”, ICML 2009



Curriculum learning: the two key challenges

Scoring function (or difficulty measurer):
Any function that provides us with an estimate of the difficulty of the
instances in our dataset(s).



Curriculum learning: the two key challenges

Scoring function (or difficulty measurer):
Any function that provides us with an estimate of the difficulty of the
instances in our dataset(s).

Pacing function (or training scheduler):
(sometimes also called competence, as we’ll see)
The function that tells us how to interleave samples into the training
process over time.



Curriculum Learning

Definition 1: Original Curriculum Learning [6]. A cur-
riculum is a sequence of training criteria over 7' training

steps: C = (Q1,...,Q¢,...,Qr). Each criterion @; is a
reweighting of the target training distribution P(z):

Qt(z) x Wi(z)P(z) Vexample z € training set D, (1)

such that the following three conditions are satisfied:

1) The entropy of distributions gradually increases,

i.e., H(Qt) < H(Qt+1).
2) The weight for any example increases, i.e.,

Wt(Z) S Wt+1(Z) Vz € D.
3) Qr(2) = P(2).

From Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021, based on original definition by Bengio et al, “Curriculum Learning”, ICML 2009



Curriculum Learning .

Curriculum learning: the more intuitive definition

(with a little bit of a tautology)

Definition 3: Generalized Curriculum Learning. Dis-
carding the definition of Q; (Eq. 1) and its three conditions
in Definition 1, a curriculum is a sequence of training
criteria over 7' training steps. Each criterion (); includes the
design for all the elements in training a machine learning
model, e.g., data/tasks, model capacity, learning objective,
etc. Curriculum learning is the strategy that trains a model
with such a curriculum.

From Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021, based on original definition by Bengio et al, “Curriculum Learning”, ICML 2009



Curriculum learning

Let’s start by considering a pre-defined curriculum,
inspired by learning from “textbook style” content

O (a)

lraining

If model converges Epocht

\

' : Difficulty
Measurer
< 4

Sample
batch @t

Sorted
data

Curriculum Design

Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021



Can you think of ways to define “difficulty”?




TABLE 2

How to define difficulty: it is task & model specific

Common types of predefined Difficulty Measurer. The “+” in cEasy
means the higher the measured value, the easier the data example,
and the “-” has the opposite meaning.

Wang et al, “A Survey on Curriculum

Difficulty Measurer Angle Data Type xEasy
Sentence length [86], [107] Complexity Text -
Number of objects |1 Complexity Images -
# conj. [—] #phrases [113] Complexity Text -
Parse tree depth [113] Complexity Text -
Nesting of operatlons [131] Complexity Programs -
Shape vanablhty 6] Diversity Images -
Word rarity [50], [86] Diversity Text -
POS entropy Diversity Text -
Mahalanobis dlstance 1 Diversity Tabular -
Cluster den51ty [11] [ Noise Images +
Data source [10 Noise Images /
SNR / SND [7], [89] Noise Audio -
Grammaticali Domain Text +
Prototyplcahty Domain Text +
Medical based 44] Domain X-ray film /
Retrieval based |1 8 82] Domain Retrieval /
Intensity [30] / Intensity Images +
Image di culty score [106], [114 Annotation Images -
Norm of word vector ﬁr Multiple Text -

Learning”, TPAMI 2021



How to define difficulty: it is task & model specific

We have already seen that specific tasks allow for specific definitions of
difficulty. Example: natural language translation (sentence length)

Frequency CDF

Sentence Length 0.04 . Sentence Difficulty
Thank you very much! 4 Thank you very much! 0.01
Barack Obama loves ... 13 Barack Obamaloves.. 0.15
My name is ... 6 My name is ... 0.03
What did she say ... 123 What did she say ... 0.95
0.00 - 0
0 100 0 100
Sentence Length Sentence Length

Figure 2: Example visualization of the preprocessing sequence used in the proposed algorithm. The histogram
shown 1s that of sentence lengths from the WMT-16 En»De dataset used in our experiments. Here sentence lengths
represent an example difficulty scoring function, d. “CDF”’ stands for the empirical “cumulative density function”
obtained from the histogram on the left plot.

Platanios et al, “Competence based curriculum learning for neural machine translation”, NAACL-HIT 2019



How to define difficulty: it is task & model specific

Another example: image segmentation (entropy/clutter)

Figure 1. Images with difficulty scores predicted by our system in increasing order of their difficulty.

lonescu et al, “How hard can it be? Estimating the difficulty of visual search in an image”, CVPR 2016



How to define difficulty: it is task & model specific

There are various dimensions to difficulty, not just (basic) data statistics.
Especially if we think about factors that relate to what humans find difficult

Compositional factors: Semantic factors: Context factors:
Size Location Object Type Scene Type & Depiction Strength Unusual object-scene Pair

s ~~.
v

“A sail boat on the “Two men standing on beach.” “Girl in the street” “kitchen in house” “A tree in water and a boy with a beard”
ocean.”

Berg et al, “Understanding and predicting importance in images”, CVPR 2012



What is difficult for ML models?

But what is difficult for ML models & is this related to human perception?
Example: human response time

Collecting response times. We collected ground-truth dif-
ficulty annotations by human evaluators using the follow-
ing protocol: (1) we ask each annotator a question of the
type “Is there an {object class} in the next image?”, where
{object class} is one of the 20 classes included in the PAS-
CAL VOC 2012; (1) we show the image to the annotator;
(111) we record the time spent by the annotator to answer the
question by “Yes” or “No”. Finally, we use this response
time to estimate the visual search difficulty.

lonescu et al, “How hard can it be? Estimating the difficulty of visual search in an image”, CVPR 2016



What is difficult for ML models?

Average human ranks about 80% image pairs in the same order as given by

the mean response time of all annotators -> compared to Pascal "difficulty”

Collecting response times. We collected ground-truth dif-
ficulty annotations by human evaluators using the follow-
ing protocol: (1) we ask each annotator a question of the
type “Is there an {object class} in the next image?”, where
{object class} is one of the 20 classes included in the PAS-
CAL VOC 2012; (1) we show the 1image to the annotator;
(111) we record the time spent by the annotator to answer the
question by “Yes” or “No”. Finally, we use this response
time to estimate the visual search difficulty.

Image property Kendall 7

(1) number of objects 0.32

(11) mean area covered by objects —0.28
(11)  non-centeredness 0.29
(1v) number of different classes 0.33
(V) number of truncated objects 0.22

(v1) number of occluded objects 0.26
(vi1)  number of difficult objects 0.20

lonescu et al, “How hard can it be? Estimating the difficulty of visual search in an image”, CVPR 2016




What is difficult for ML models?

Example: shallow embeddable examples seem to be learned first
A deep network in comparison to a SVM (random forest also in the paper)

_ Ratio of CNN Accuracies on 1.5 i : > Ratio of ResNet101 Accuracies on
SVM-correct to SVM-wrong subsets Ratio of DenseNet121 accuracies on —
J SVM-correct to SVM-wrong subsets SVM-correct to SVM-wrong subsets

14

1.3

1.2

1.1
1
1.0 \
0 100 200 300 400 500 600 0 250 500 750 1000 1250 1500 1750 2000 0 20 40 60 80 100

Ratio of Accuracies R* plotted against ¢ with M being a Support Vector Machine.

Mangalam & Prabhu, “Do deep neural networks learn shallow learnable examples first?”, ICML 2019
workshop on identifying and understanding deep learning phenomena



Difficulty beyond (curriculum) learning

Assessing difficulty is interesting beyond curriculum learning

Example: estimating the difficulty with respect to annotation cost

&

8 o
5| <
Most regions are understood, This looks expensive to .
but this region is unclear. annotate, and it does not Label the object(s)
seem informative. > > in this region
g o o o L N L ' u.‘ p.
A % El ad=3 E £ < ° 3
This looks expensive to This looks easy to
annotate, but it seems annotate, but its content ) :
very informative. is already understood. Completely segment
Dog Contains book and label this image.
(a) Labeled (and partially la- (b) Unlabeled and partially labeled examples to survey (c) Actively chosen queries sent to anno-

beled) examples to build models

tators

Vijayanarasimhan & Grauman, “What’s It Going to Cost You?: Predicting Effort vs. Informativeness for Multi-Label Image Annotations”, CVPR 2009



Pacing: how to schedule the training




Scheduling training

Data
small & easy
~ Subset
T >
Q1 Q¢ Qr =P Curriculum

Training process

Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021

If we want to define the
curriculum up-front,
according to prior
knowledge, then:

when do we introduce
more difficult examples?



Pacing functions

Various options & heuristics are conceivable

Algorithm 1 One-Pass Curriculum

1: procedure OP-CURRICULUM(M,D, C)

2: D’ =sort(D, C)

3:  {D!',D? .., D"} = D' where C(d,) < C(dp) dg €
D' ,dy, € D7,Vi < j

4 for s=1..k do

5: while not converged for p epochs do
6: train(M, D?)

7 end while

8 end for

9: end procedure

Algorithm from Cirik et al, “Visualizing and understanding curriculum learning for long
short-term memory networks”, arXiv, 2016
Based on the procedure described in Bengio et al, “Curriculum Learning”, ICML 2009



Pacing functions

Various options & heuristics are conceivable

Algorithm 2 Baby Steps Curriculum
1: procedure BS-CURRICULUM(M,D, C)

Algorithm 1 One-Pass Curriculum

1: procedure OP-CURRICULUM(M,D, C) 2 D' =sort(D, C)
2. D'=sort(D, () 3 {D!,D?,...,DF} = D' where C(d,) < C(dp) do €
33 {D',D? ..,D*} = D’ where C(d,) < C(dp) d, € Di,dy, € DI, Vi< j
D' ,dy, € D, Vi< j 4: Dtram — @
4 for s=1..k do 5 for s=1..k do
5 while not converged for p epochs do 6: Diram — ptram ps
6: train(M, D?%) 7: while not converged for p epochs do
7: end while 8: train(M, D*"*™)
o end for 9: end while
9: end procedure 10:  end for

11: end procedure

Algorithm from Cirik et al, “Visualizing and understanding curriculum learning for long
short-term memory networks”, arXiv, 2016
Based on the procedure described in Spitkovsky et al, “From baby steps to leapfrogs:
how less is more in unsupervised dependency parsing”, NAACL-HLT, 2010

Algorithm from Cirik et al, “Visualizing and understanding curriculum learning for long
short-term memory networks”, arXiv, 2016
Based on the procedure described in Bengio et al, “Curriculum Learning”, ICML 2009



Pacing functions

Various options & heuristics are conceivable

1 0 . . s s s s s o s 1.07
~ —— Fixed exponential pacing !
---- Varied exponential pacin '
@ 0.8 . P pasing | 0.8 -
o | Single step :
- : Q
'-8 0.6 Starting 5 0.6
S percent *g —— Clinear
5 0.4 / \ H.., = H, - Increase g 0.4 - — Csart
AL A O — Croot—3
L 09 ' - H, — data size at time t — Croot—5
__.!--------"! 02 — Croot—10
0.0 ' 0
0 500 1000It . 1500 2000 2500 "0 200 400 600 800 1000
eration Time

Platanios et al, “Competence based curriculum learning

Hacohen & Weinshall, “On the power of curriculum learning in deep networks”, ICML 2019 for neural machine translation”, NAACL-HLT 2019



Pacing functions

It’s not straightforward to choose, especially due to model/task dependency
IWSLT16 : Fr —» En
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Platanios et al, “Competence based curriculum learning for neural machine translation”, NAACL-HIT 2019



Pacing functions

It’s not straightforward to choose, especially due to model/task dependency
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Beyond pre-defined curricula
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Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021



Transfer-teacher curricula

Instead of defining the curriculum, we could use a pre-trained teacher
model (based on a different related dataset) based difficulty measure
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Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021



Transfer-teacher curricula

Instead of defining the curriculum, we could use a pre-trained teacher
model (based on a different related dataset) based difficulty measure
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Figure 2. Results 1n case 1, with Inception-based transfer scoring Hacohen & Weinshall, “On the power

. . . . of curriculum learning in dee
function and fixed exponential pacing function. networks”. oML 2010



From pre-defined to self-paced

Using a teacher is a form of pre-defined curriculum, what if we want to have
an adaptive measure of difficulty, based on our current model?
Moving away from a pre-defined curriculum towards model “competence”
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Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021



From pre-defined to self-paced

Often this is called self-paced learning
Now rely on a model’s current hypothesis at each point in time to assign
difficulty to the training data, rather than ranking according to the target

Training loss @t as difficulty Epocht
1 Difficulty - Training
\Measurer/ Sorted
data

Curriculum Design

Sample
batch @t

Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021



Self-paced & self-taught

Self-paced learning: Self-taught learning:
Measure the difficulty of an instance Train a model fully, measure each instance
according to current loss/predictions etc. according to final model, assign difficulty
(related to the ideas in active learning) score and start over with curriculum ->

repeat (related to the ideas in boosting)



Self-paced & self-taught

Self-paced learning: Self-taught learning:
Measure the difficulty of an instance Train a model fully, measure each instance
according to current loss/predictions etc. according to final model, assign difficulty
(related to the ideas in active learning) score and start over with curriculum ->
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Again: why is it so hard to beat “random”?
"wrong" things to measure & constrained evaluation




It’s about set-up & evaluation (our topic tomorrow)

Training \

Testing

Model update / Finetune
Annotation path in AL
Sequence (seq.) of tasks
Training / Testing data

[ —
—p
—p
—_—
@
. Unlabeled training data

Learner at step i in seq.

T Thi1 T T, Tn
Traditional Machine Learning Transfer Learning Multi-task Learning

T /
ﬁ' —'. r Curriculum
T M)
i 1

7)) 2)
Expert )
Annotator

.

Specific learner for task j

\ Wang et al, “A Survey on Curriculum
Learning”, TPAMI 2021

Continual Learning Active Learning




Mean Accuracy (%)

We have consistently assumed A LOT! Tomorrow’s

essence: opening "Pandora’s box” of evaluation
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Dataset classification
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Learning Workshop 2019 (Based on a long-known problem, Matan1990)



