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Training

Traditional Machine Learning

Continual Learning

It’'s about set-up & evaluation
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Sequence (seq.) of tasks
Training / Testing data
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Specific learner for task j

Wang et al, “A Survey on Curriculum

Learning”, TPAMI 2021



What if we don’t know the boundary & aren’t constrained to test examples?

What if future or unrelated data is in the test set?

Task 1

0/

first second
class class

Task 2

first second
class class

Task 3

first second
class class

first
class

second first second
class class class

Figure 1: Schematic of split MNIST task protocol.

van de Ven et al, “Three types of incremental learning”, Nature M| 2022




Challenge: the world is “open”
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The threat of unknown unknowns

What do you think the prediction will
be for a ML based classifier?
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fashion animal
Images picture




Challenge: the world is “open”

The threat of unknown unknowns

What do you think the prediction will
F Vo D R be for a ML based classifier?

Train on . Receive

fashion g animal .
images picture Most ML models are overconfident

"They don’t know
when they don’t know”™




Challenge: the world is “open”

Dataset classification

20000 " s FashionMNIST (trained)
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A quantitative example:
* Train a neural network classifier on
a dataset (here fashion items)
* Log predictions for arbitrary other
I datasets
— * Observe that majority of
misclassifications happen with
large output “probability”

Classification confidence

Mundt et al “Open Set Recognition Through Deep Neural Network Uncertainty, Does Out-of-Distribution Detection Require
Generative Classifiers?”, ICCV Statistical Deep Learning Workshop 2019 (Based on a long-known problem, Matan1990)



“But this example Is unrealistic In practice”!




Challenge: so many elements can shift

ImageNet

- Performance loss even
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happens if we recollect
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another “test" set with the
same Instructions a 2nd time!
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“Do ImageNet classifiers

New test accuracy (top-1, %)

generalize to ImageNet?"

40 1 ~ . v -
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Original test accuracy (top-1, %)
- == |deal reproducibility © Model accuracy @ =—— Linear fit

Recht et al, “Do ImageNet Classifiers Generalize to ImageNet?”, ICML 2019



Challenge: so many elements can shift

Lots of natural perturbations & corruptions

Gaussian Noise Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blur

Hendricks & Dietterich, “Benchmarking Neural Network Robustness to Common Corruptions and Perturbations”, ICLR 2019



Accuracy In ImageNet has seemingly increased at the

expense of robustness.

Lots of natural perturbations & corruptions

Impulse Noise

Defocus Blur Frosted Glass Blur
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Hendricks & Dietterich, “Benchmarking Neural Network Robustness to Common Corruptions and Perturbations”, ICLR 2019
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Accuracy In ImageNet has seemingly increased at the

expense of robustness.

Lots of natural perturbations & corruptions

Architecture Perturbation Robustness
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Hendricks & Dietterich, “Benchmarking Neural Network Robustness to Common Corruptions and Perturbations”, ICLR 2019



“Accuracy” in generation (FID) score, suffers from

similar challenges with the way we typically measure

IEIEIB Recall: our losses &
- 023 . evaluation measures are
- E often proxies for what we
. | | | really want
‘I Fréchet Inception Distance
- Ry (FID) makes use of a pre-
- . trained model to gauge
R N generation "quality”

Ali Boriji, "Pros and Cons of GAN Evaluation Measures”, 2018



Perspectives to address these challenges




More than known vs. unknown

1. Known knowns:
From same distribution as train. Assumption: accurate & confident prediction.
2. Known unknowns:

3. Unknown unknowns:

4. Unknown knowns:
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More than known vs. unknown

1. Known knowns (or simply knowns):
From same distribution as train. Assumption: accurate & confident prediction.

2. Known unknowns:
Existing unknown “non-"examples or examples with high uncertainty.

3. Unknown unknowns:
Unseen instances belonging to unexplored & unknown data distributions.

4. Unknown knowns:
Usually not considered: known concept but choose to treat it as unknown (willful
ignorance?) or our ML system cannot represent the concept + structure altogether



What do you think: how can we solve our challenge?




Three categories of approaches

e CAP [131]
o OpenMax [67]
Meta_ . ?)Aahah;nobis [}32]]
] ] ] ] . - e OWR- urovey 15
Anomalies In predictions: recognition| :crosk i3}
 ® Latent based EVT [40]

The unsuspecting angle, where out-of-distribution are
hopefully separable through anomalous output values

OP EN SET Prior fo Universum Infc."renc.e [136]
RECOG- Knowl- I%"é%"ﬁﬂ?ﬁ'é’ﬁiﬂ »
Incorporating prior knowledge: NITION edge | im0l

The intuitive idea to include “background” or “non-
example” data population explicitly.

o Softmax-Confidence [14]
e TCM-kNN [143]

Thr?Sh' e Hinge Loss [144]

oldmg o Confidence [145]

e ODIN [148]
P l. Ctive X e OCGAN [150]
Anoma-
lies

Open Set recognition:
The more formal approach ensures that we only rely on Uncer. | + g Ko 19

e Deep Generative Models [152]

tam"y e Predictive Uncertainty under
Dataset Shift [153]

.

predictions from our “covered space”; we create bounds.

Figure from “A Wholistic View of Deep Neural Networks: Forgotten Lessons and the
Bridge to Active and Open World Learning”, Mundt et al, Neural Networks, 2023




Predictive anomalies:
the unfortunate part of the story

Disclaimer: I'll use many figures from our papers for convenience,
without trying to imply that we discovered these phenomena



Overconfidence & uncertainty

Unfortunately uncertainty is not a necessarily a “fix”

Standard neural network classifier

Dataset classification
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Figure from Mundt et al “Open Set Recognition Through Deep Neural Network Uncertainty, Does Out-of-Distribution Detection Require Generative Classifiers?”, ICCVW 2019



Overconfidence & gen. models

It get’s even harder when we try to select a threshold
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Figure from Mundt et al, “Unified Probabilistic Deep Continual Learning Through Open Set Recognition and Generative Replay”, Journal of Imaging, Volume 8, Issue 4, 2022



Overconfidence & uncertainty

It get’s even harder when we try to select a threshold
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Figure from Mundt et al, “Unified Probabilistic Deep Continual Learning Through Open Set Recognition and Generative Replay”, Journal of Imaging, Volume 8, Issue 4, 2022



Overconfidence & gen. models

Overconfidence is not exclusive to discriminative models
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Nalisnick et al, “Do Deep Generative Models Know What They Don’'t Know”, ICLR 2019 Ventola et al, UAI 2023. “Do Probabilistic Circuits Know What They Don’t Know”?



Including prior knowledge: an alternative?




The Intuitive idea

Take a look at the Materials in Context (MINC) dataset: what do you notice?
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Bell & Upchurch et al, “Material Recognition in the Wild with the Materials in Context Database”, CVPR 2015



The Intuitive idea

Take a look at the Materials in Context (MINC) dataset: what do you notice?
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Bell & Upchurch et al, “Material Recognition in the Wild with the Materials in Context Database”, CVPR 2015



Inference with the universum

In essence: include “non-examples” that aren’t of interest but are available

(Some) key questions:
 How to iImplement the loss: many many conceivable conceivable
e “\What part of the universum is useful” (“Inference with the universum”, Weston et al, ICML 2006)

 "What are we expected to see during prediction later”?
(Noise? Other concepts? Etc.)



Calibration: some examples

1. We could let our predictions follow a uniform distribution for “out” data

(Kimin Lee et al, “Training confidence-calibrated classifiers for detecting out-of-distribution samples”, ICLR 2018)

min Bp, x| —10g Py (y = ¥IX) | + BEp,.. 0 [KL U (y) || P (y]x)) |
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2. We could predict an “out” category or generally maximize uncertainty



Calibration: some examples

1. We could let our predictions follow a uniform distribution for “out” data

(Kimin Lee et al, “Training confidence-calibrated classifiers for detecting out-of-distribution samples”, ICLR 2018)

min Ep, (x5 | —log Py (y = UIX) | + BEp,,.x) [KL U (y) || Py (y/x)) |

2. We could predict an “out” category or generally maximize uncertainty

3. And many other versions to modify our loss to do something with “out”,
€.J. (Dhamija et al, “Reducing network agnostophobia”, NeurlPS 2018)
—log S¢(x) if z € D/, is from class c
Tp(z) = {—% f:llogSc(x) if x € D,



Background & Objectosphere

We could also construct variants for features/activations etc. to be zero

(a) Softmax (b) Background (c) Objectosphere
Figure 1: LENET++ RESPONSES TO KNOWNS AND UNKNOWNS. The network in|(a)\was only trained

to classify the 10 MNIST classes (D..) using softmax, while the networks in|(b) and|(c) added NIST letters [15]
as known unknowns (D, trained with softmax or our novel Objectosphere loss.

Dhamija et al, “Reducing Network Agnostophobia”, NeurlPS 2018



What do you think are the up & downsides so far?




Closed to open world assumption

As the world grows more “open” we move from known unknowns to
unknown unknowns. Our two perspectives only handle the former

. o Face . Open Set
Multi-class Classification Detection

Verification Recognition

o

Closed Open
Training and Claimed One class, Multiple known
testing samples identity, everything else classes, many
come from possibility for  in the world is unknown
known classes impostors negative classes

Scheirer et al, “Towards Open Set Recognition”, TPAMI 2012



Open set recognition & explicit bounds




Intuition behind open space

Intuitively: take into account
Negatives

distances from known data points

SVM example: fit another parallel
plane to reject, based on support
set with large distances

c
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k]
- g
T
Y
c
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"Don’t know & should not predict”

' Specialization

Scheirer et al, “Towards Open Set Recognition”, TPAMI 2012



Formalizing open space/sets

Intuitively: open space is what is
not covered with known data

“Learning and the Unknown”, Boult et al, AAAI 2019 Scheirer et al, “Probability Models for Open Set Recognition”, TPAMI 2014



Formalizing open space/sets

Intuitively: open space is what is
not covered with known data

Formally: For a recognition function

f over space 2 & a union of balls Monotonically
decreasing prob.

with radius r that includes all ~
known training examples: s
+F

Positive training data

“Learning and the Unknown”, Boult et al, AAAI 2019 Scheirer et al, “Probability Models for Open Set Recognition”, TPAMI 2014



Some system examples that follow this intuition

There exist systems that use this idea, e.g. by extreme observed value fits

“Standard Model” “OpenMax” “OpenVAE”
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Mundt et al, “Unified Probabilistic Deep Continual Learning Through Open Set

Bendale & Boult et al, “Towards Open Set Deep Networks”, CVPR 2016 Recognition and Generative Replay”, Journal of Imaging 8:4, 2022



Open world learning: combining ideas




Open world learning: set-up & evaluation

Training phase

Parameter Learning Phase Incremental Learning Phase

Testing phase

Known Categories

Closed Set Testin
5 Unknown Categories

Open Set Testing

Figure from CVPR16 “Statistical Methods for Open Set Recognition” by Scheirer &
Boult, https://www.wjscheirer.com/misc/openset/cvpr2016-open-set-part3.pdf



https://www.wjscheirer.com/misc/openset/cvpr2016-open-set-part3.pdf

Open world learning: set-up & evaluation

Open world learning tries to “puzzle together” some (not all) of our seen pieces

“An effective open world recognition system must efficiently perform four tasks: detect
unknown, choose which points to label for addition to the model, label the points, and
update the model” (Boult et al, “Learning and the Unknown”, AAAI 2019)

. Label Data -

e World with Knowns (K) & e LU: Labeled
Unknowns Unknowns (UU) * NU: Novel Unknowns e K: Known
: Unknowns
| Recognize Detect as Incremental
as Known Unknown Learning |

e

=/

Bendale & Boult ,“Towards Open World Recognition”, CVPR 2015




Finally: all together? An invitation to read two surveys!

1. A wholistic view of CL, Mundt et al, Neural Networks 2023

M. Mundt, Y. Hong, 1. Pliushch et al. Neural Networks 160 (2023) 306-336

' 7\ & N
« DNC (Ash, 1989) «iCarl (Rebuffi et al., 2017)
* PNN (Rusu et al., 2016) « MRGAN (Wu et al., 2018)
« ExpertGate (Aljundi et al., 2017) | Dynamic « VCL (Nguyen et al., 2018) u
« NDL (Draelos et al., 2017) " Growth « VGR (Farquhar and Gal, 2018a)
« DEN (Yoon et al., 2018) «» VASE (Achille et al., 2018) O W O r e I I l
« RCL (Xu and Zhu, 2018) v « FearNet (Kemker and Kanan, 2018) y
« Learn-to-Grow (Li et al., 2019a) « LLRNN (Sodhani et al., 2019)

- . ; « LLGAN (Zhai et al., 2019)

« Activation sharpening (French, 1992) « CAP (Scheirer et al., 2014)

| ]
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+ HAT (Serra et al., 2018) cFixe(-i - Architectural Met.a - * Mahalanobis (Lee et al., 2018b) I V
+ Piggyback (Mallya et al., 2018) apacity recognition | « OWR-Survey (Boult et al., 2019)

« CROSR (Yoshihashi et al., 2019)

« UCB-P (Ebrahimi et al., 2020)
« Latent based EVT (Mundt et al., 2019)

« GeppNet (Gepperth and Karaoguz, 2016)

« GEM (Lopez-Paz and Ranzato, 2017) Exemplar .

* SER (lIsele and Cosgun, 2018) Rehearsal

« CLEAR (Rolnick et al., 2018) ,

* A-GEM (Chaudhry et al., 2019)

« BiC (Wu et al., 2019)

DEEP OPEN SET

« Universum Inference (Weston et al., 2006)
Prior « Confidence Calibration (Lee et al., 2018a)

Replay CONTINUAL RECOG" | « Objectosphere Loss (Dhamija et al., 2018)
Knowledge | 7 el et al. 2019)
; . LEARNING NITION  Discrepaney Loss (Yo and Aizava, 2019) O r e r a re
« Pseudorehearsal (Robins, 1995)
« Pseudo-recurrent nets (French, 1997)
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tainty * Deep Generative Models (Nalisnick et al., 2019)
« Uncertainty under Dataset Shift

(Ovadia et al., 2019)
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« RWalk (Chaudhry et al., 2018)

« MAS (Aljundi et al., 2018) | Structural

« ALASSO (Park et al., 2019)

« UCL (Ahn et al., 2019)

« UCB (Ebrahimi et al., 2020)
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Learning”, Mundt et al, L ASAL oo s Tomte, 2020
Neural Networks, 2023

Fig. 4. Visual taxonomy of neural network based methods for continual learning, active learning and open set recognition.



Finally: all together? An invitation to read two surveys!

2. Biological underpinnings of LML, Kudithipudi et al, Nature M| 2022
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S0 what are the implications for evaluation measures?




It depends on the choices for our mechanisms.

Example: (catastrophic) forgetting

Generally: Average loss, final loss, learning speed, data dependency,
transferability, forgetting (backward transfer), “openness”, robustness”?

Rehearsal methods: (constant?) memory size, generated data amount,
extra computational expense...?

Regularization methods: Regularization strength (hyper-parameters),
memory expense, computational expense...?

Architecture/parameter methods: Number of parameters, number of
models, expert heads, memory expense, computational expense...?



First good idea: per “task” measures

* “Base” loss: the initial (an old) task after i new experiences 1 I o
Qbase _ Z base,i
r—1 i—> Qideal
1 T
» “New” loss: the newest task only Qpeyy = 71 L Onewi
=2
| — Xall i
* “All” loss: average up to the present point in time i=2 “ideal

e “ldeal” loss: offline value trained at once

Kemker et al, “Measuring Catastrophic Forgetting in Neural Networks”, AAAI 2018



First good idea: per “task” measures

* “Base” loss: the initial (an old) task after i new experiences 1 T o
| Qb _ Z base,i
-> Measure retention @e T = Cideal
1 T
« “New” loss: the newest task only Qpew = 71 L Onewi
-> Measure ability to encode new tasks =2
| — Xall i
Qaur = T—1 ) Q;
* “All” loss: average up to the present point in time i=2 “deal

-> Measure present overall performance

e “ldeal” loss: offline value trained at once
-> Measure achievable “baseline”

Kemker et al, “Measuring Catastrophic Forgetting in Neural Networks”, AAAI 2018



Second good idea: learning speed & data dependency

(Avg.) b-shot performance (b = mini-batch number) after the model has
been trained on all tasks T

Chaudhry et al, “Efficient Lifelong Learning with A-GEM”, ICLR 2019



Second good idea: learning speed & data dependency

(Avg.) b-shot performance (b = mini-batch number) after the model has
been trained on all tasks T

Learning Curve Area (LCA) at beta is the area of the convergence curve Z

as a function of b in [0, betal: 3
LCA; = — /ﬁz db = — Y Z
ST+ ), 7 _ﬁ-l-lb:O ’

Beta = 0 Is zero-shot performance == Forward transfer

Chaudhry et al, “Efficient Lifelong Learning with A-GEM”, ICLR 2019



Third good idea: memory, size & compute

Similar measures for memory, size & compute (here tasks=N) (piaz-Rodriguez &

Lomonaco et al, "Don’t forget, there is more than forgetting: new metrics for Continual Learning”, 2018)

N Mem(@l) N Mem(M,,;)
oy BT Z = ; : Zi:l Mem (D
CE = min(1 2ii=1 Ops(Tri) ) MS = min(1, =1 ]Aéem(e") ) SSS =1—-min(1, N (D) )
’ N

Computational Efficiency Model Size Efficiency Sample Storage Size Efficiency

Quantifies add/multiply ops Quantifies parameter Quantifies stored amount of data
(inference & updates) growth (for rehearsal)



We don’t yet have consensus, but we at least agree it’s
more than “best in bold” of some average value




The challenge of definitions & formulating desiderata:

consensus

Some suggestions (Farquhar & Gal, “Towards Robust Evaluations in Continual Learning”):
A. Cross-task resemblance

Shared output head

B.

C. No test time task labels

D. No unconstrained re-training on old tasks
E.

More than two tasks

And also questions: unclear task boundaries, continuous tasks, overlapping vs. disjoint
tasks, long task sequences, time/compute/memory constraints, privacy guarantees...



The challenge of definitions & formulating desiderata:

consensus

Is it at all possible to postulate general desiderata?

Property
Knowledge retention
Forward transfer
Backward transfer
On-line learning
No task boundaries
Fixed model capacity

Definition

The model 1s not prone to catastrophic forgetting.

The model learns a new task while reusing knowledge acquired from previous tasks.
The model achieves improved performance on previous tasks after learning a new task.
The model learns from a continuous data stream.

The model learns without requiring neither clear task nor data boundaries.

Memory size 1s constant regardless of the number of tasks and the length of a data stream.

Table 1: Desiderata of continual learning.

Biesialska et al, “Continual Learning in Natural Language Processing: A Survey”, COLING 2020



We seem to lack benchmarks that allow us to do principled

Investigation + non-static datasets at large-scale

Importantly: a lot of existing work (if not the most) “emulates”
by re-purposing existing datasets

* A sequence of datasets

* Sequences of classes (from known datasets)

o Sequentially querying the instances of datasets
 Sequences of games (in RL), or languages etc.

* Seqguences of the same task with shifting distribution



S0 what are good benchmarks & how do we evaluate?




S0 what are good benchmarks & how do we evaluate?
| don’t have full answers, but It Is extremely important!




Why? Answer A:
Reproducibility Crisis




Why? Answer A) is reproducibility in a crisis?

7%

Don’t know

3%

No, there is no crisis

IS THERE A

REPRODUCIBILITY
CRISIS?

A Nature survey lifts the lid on
how researchers view the ‘crisis’

rocking science and what they
think will help.

BY MONYA BAKER

52%

Yes, a significant
crisis

38%

Yes, a slight
crisis

1,576
RESEARCHERS SURVEYED

“1500 scientists lift the lid on reproducibility”, Baker, Nature, issue 533, 2016



Why? Answer A) is reproducibility in a crisis?

3, HAVE YOU FAILED TO REPRODUCE
e AN EXPERIMENT?

Most scientists have experienced failure to reproduce results.

® Someone else’s @ My own

Chemistry

IS THERE A

REPRODUCIBILITY *
CRISIS?

A Nature survey lifts the lid on
how researchers view the ‘crisis’

rocking science and what they
think will help.

Biology

Physics and
engineering

Medicine

BY MONYA BAKER
Earth and

environment

52%

Yes, a significant
Crisis

38
Yes, ?gl/ght Other

Crisis

80 100%
1,576
RESEARCHERS SURVEYED

“1500 scientists lift the lid on reproducibility”, Baker, Nature, issue 533, 2016



Why? Answer A) is reproducibility in a crisis?

WHAT FACTORS CONTRIBUTE TO
IRREPRODUCIBLE RESEARCH?

Many top-rated factors relate to intense competition and time pressure.

® Always/often contribute @ Sometimes contribute

Selective reporting

Pressure to publish

Low statistical power or poor analysis
Not replicated enough in original lab
Insufficient oversight/mentoring
Methods, code unavailable

Poor experimental design

Raw data not available from original lab

Fraud

Insufficient peer review

0 20 40 60 80 100%

“1500 scientists lift the lid on reproducibility”, Baker, Nature, issue 533, 2016



Why? Answer A) is reproducibility in a crisis?

WHAT FACTORS CONTRIBUTE TO

s s e i e s HAVE YOU EVER TRIED TO PUBLISH
| A REPRODUCTION ATTEMPT?

Although only a small proportion of respondents tried to publish

® Always/often contribute @ Sometimes contribute
Selective reporting _ ; ; : replication attempts, many had their papers accepted.

Pressure to publish [N ® Published ~ ® Failed to publish

: ' ; Successful 0

Not replicated enough in original lab

: reproduction 0
Insufficient oversight/mentoring f 55 '2 /0

Methods, code unavailable

Unsuccessful
Raw data not available from original lab ‘ . reproduction — '“0/
Fraud - 0

Insufficient peer review

0 20 40 60 80 100%

“1500 scientists lift the lid on reproducibility”, Baker, Nature, issue 533, 2016



Why? Answer A) is ML reproducibility in a crisis?

Through experimental methods focusing on PG methods
for continuous control, we investigate problems with repro-
ducibility in deep RL. We find that both intrinsic (e.g. random
seeds, environment properties) and extrinsic sources (e.g. hy-
perparameters, codebases) of non-determinism can contribute
to difficulties in reproducing baseline algorithms.

“‘Deep Reinforcement Learning that Matters”, Henderson et al, AAAI 2018



Why? Answer A) is LML reproducibility in a crisis?

- The lack of consensus 1n evaluating
continual learning algorithms and the almost exclusive focus on forgetting motivate
us to propose a more comprehensive set of implementation independent metrics
accounting for several factors we believe have practical implications worth con-
sidering in the deployment of real Al systems that learn continually: accuracy or
performance over time, backward and forward knowledge transfer, memory over-
head as well as computational efficiency.

“Don’t forget, there is more than forgetting: new metrics for Continual Learning”,
Diaz-Rodriguez et al, Continual Learning Workshop at NeurlPS 2018




Why? Answer A) is LML reproducibility in a crisis?

- The lack of consensus 1n evaluating
continual learning algorithms and the almost exclusive focus on forgetting motivate
us to propose a more comprehensive set of implementation independent metrics
accounting for several factors we believe have practical implications worth con-
sidering in the deployment of real Al systems that learn continually: accuracy or
performance over time, backward and forward knowledge transfer, memory over-
head as well as computational efficiency.

“Don’t forget, there is more than forgetting: new metrics for Continual Learning”,
Diaz-Rodriguez et al, Continual Learning Workshop at NeurlPS 2018

we evaluate CF behavior on the hitherto largest number of visual classification
datasets, from each of which we construct a representative number of Sequential

Learning Tasks (SLTs) in close alignment to previous works on CF. Our results
clearly indicate that there 1s no model that avoids CF for all investigated datasets

and SLT's under application conditions.

“A comprehensive, application-oriented study of catastrophic forgetting in DNNs”,
Pfuelb & Gepperth, ICLR 2019



Why? Answer B:
Awareness of application relevant trade-offs




Why? Answer B) every application has different

requirements, but we need to be aware of trade-offs

Category Method Memory Compute Task-ag.nostlc Privacy Additional required
possible issues storage
train  test train test
Replay-based iCARL 1.00 5.63 v v M+ R
GEM 1.29 v v T -M+R
Reg.-based LwF 1.10 v X M
EBLL 1.08 v X M+T-A
SI 1.05 v X 3-M
EWC 1.05 v X 2-M
MAS 1.05 v X 2-M
mean-IMM 1.03 v X T-M
mode-IMM 1.03 v X 2-T-M
Param. iso.-based  PackNet X X T - M[bit]
HAT X X T-U

De Lange et al, “A continual learning survey: Defying forgetting in classification tasks”, TPAMI 2021

Low

High
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Why? Answer B) every application has different

requirements, but we need to be aware of trade-offs
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Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
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Why? Answer B) every application has different
requirements, but we need to be aware of trade-offs

-
Settles (2009): “The key hypothesis

in active learning (sometimes
called “query learning” or
“optimal experimental design” in
the statistics literature) is that if the
learning algorithm is allowed to
choose the data from which it learns
- 10 be “curious”, if you will - it will
perform better with less training.”

N

J

Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
Compass to Promote Research Transparency and Comparability”, ICLR 2022
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points arrive in a sequential order.
When a new data point arrives, the
existing model is quickly updated 1o
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Caruana (1997): “is an inductive
transfer mechanism whose principle
goal is to improve generalization
performance by leveraging the
domain-specific information
contained in the training signals of
related tasks. It does this by
training tasks in parallel while
using a shared representation.”
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Apart from continuing research, what can we do now?




We can develop & use transparent documentation

7%

Don’t know

3%

No, there is no crisis

Movie Review Polarit, Thumbs Up? Sentiment Classification using Machine Learning Techniques .1s . .
y P e g 1 Model Card - Smiling Detection in Images
these are words that could be used to describe the emotions of john sayles’
otivation f
characters in his latest , limbo . but no , i use them to describe myself after . antitative Analyses

For what purpose was the dataset created? Was there a specific task sitting through his latest little exercise in indie egomana . i can f°’§i"° m"‘*"y M(l;del lD e::is ch Google and th versity of T Qu Y
in mind? Was there a specific gap that needed to be filled? Please provide tlu:_gs . but using §omefha<3kn;yed ; w:“a‘cl;ed-z:ltf s s.clre.wegl-up . nor:i - e Develop . y researchers at Google and the University of Toronto, 2018, v1. False Positive Rate @ 0.5

IS I“["[ A a description. :ll:r m:h o‘n a :mwe 1;tun.oarf1val o: dml w le a lOd:m e tm :, r:mt:: bsat e Convolutional Neural Net. S

.. . ough two hours of typical , p! g sayles melodrama to get cheated by a . - _ . _ . )
The dataset was created to enable research on predicting senti- complete and total copout finale . does sayles think he’s roger corman ? . Pre'tx.'amed fO{' face. recognition then fine-tuned with cross-entropy loss for binary yout;ig;z:;l: . —o—
ment polarity—i.e., given a piece of English text, predict whether i . ] o smiling classification. young-male
it has a positive or negative affect—or stance—toward its topic. l:{eg;r/ec:"‘l“;; i";“f’i“s ;egaté‘ftwlaﬂty instance, taken from the file Intended Use o T
The: dataset Was cre?.ted intentionally with that task n mln'd, fo- e Intended to be used for fun applications, such as creating cartoon smiles on real young Fo-
cusing on movie relv1ews as a place where affect/sentiment is fre- images; augmentative applications, such as providing details for people who are male —o—
quently expressed. exception that no more than 40 posts by a single author were in- blind; or assisting applications such as automatically finding smiling photos. female o4
Who created the dataset (e.g., which team, research group) and on cluded (see “Collection Process” below). No tests were run to e Particularly intended for younger audiences. all o
. behalf of which entity (e.g., co;'npany, lnstltt’nlon, organization)? determine representativeness. o Not suitable for emotion detection or determining affect; smiles were annotated 0.000.02 0.04 0.06 0.08 0.10 0.12 0.14
The dataset was created by Bo Pang and Lillian Lee at Cornell What data does each instance consist of? “Raw” data (e.g., unpro- based on physical appeatance, and not underlying emotions. False Negative Rate @ 0.5
A Nature survey lifts the lid on University. cessed text or images)or features? In either case, please provide a de- Factors old-male o
i ‘erigig’ scripdon. e Based on known problems with computer vision face technolo otential rel- old-female °
how researchers view the ‘crisis Who funded the creation of the dataset? If there is an associated grant, Each instance consists of the text associated with the review, with evant factors incil de groups for ge rI: der, age, race, and Fitzp agtz ;g{ skin type; YOung-fema}e o
rockmg science and what they please. provide the name of the grantor a.nd'the grant name and nunjber. obvious ratings information removed from that text (some errors hardware factors of camera type and lex;s tyl;e- an’ 1 environmental factors of” young-male ©
think will hel p Funding was provided from five distinct sources: the National were found and later fixed). The text was down-cased and HTML lichts 1 homidi > old o
: Science Foundation, the Department of the Interior, the National . ghting and humidity. young °
? ? tags were removed. Boilerplate newsgroup header/footer text was Matinn fartare are condar and ace e ac anmatatod in the bl

male
female

Types Probes to Uncover Limitation Examples all
of Limitations 0.000.02 0.04 0.06 0.08 0.10 0.12 0.14
False Discovery Rate @ 0.5

Fidelity How faithfully do the formalism of the problem, The training data was labeled even old-male e

Business Center, Cornell University, and the Sloan Foundation.

BY MONYA BAKER
Any other comments?

None.

Composition

52% 38% the technical approach, and the results map onto though similar real-world data is not usu- . ‘::32232 T
Yes, a significant Yes, a slight What do the instances that comprise the dataset represent (e.g., doc- . . . ) young-
crisis crisis uments, photos, people, countries)? Are there muliple types of In- the motivating problem that drives the work? ally labeled. young-male —e—i
stances (e.g., movies, users, and ratings; people and interactions between § Generalizability To what extent do the results hold in different con- Model was developed for a particular sce- . old
them; nodes and edges)? Please provide a description. . . young
tances are movie reviews extracted from new texts? How broadly or narrowly should the claims nario and does not apply to other scenar-
1,576 in the paper be interpreted? How broadly can the ios or contexts.

RESEARCHERS SURVEYED

technical approach be applied across domains?

Robustness How sensitive are the results to minor violations Adding a small amount of noise in the
of assumptions (e.g., small tweaks to mathematical data dramatically reduces accuracy.
model, metrics, hyperparameters)?

Reproducibility To what extent could other researchers reproduce Researchers provide details on parame-
the study? ter settings used but cannot share code

or data because they are proprietary.

Resource Is the technical approach computationally effi- Technical approach requires specialized

Requirements cient? Does it scale? What other resources does hardware.
the technical approach require?

Value Tensions Are some values (e.g., novelty, simplicity, high The model has high accuracy on a test
accuracy, low false positive rate, ease of imple- dataset but is a black box and hard to
mentation, interpretability, efficiency) sacrificed interpret.
in pursuit of others?

Vulnerability to Mis- How sensitive are the results to human errors, System operators are liable to misinter-

takes and Misuse unintended uses, or malicious uses? pret results without sufficient training.

Reproducibility Crisis, Baker, Nature 2016
Model Cards, Mitchell et al, FAccT 2019

Data Sheets, Gebru et al, CACM 2021
REAL ML: Smith et al, FAccT 2022
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Continual Learning EValuation Assessment:

CLEVA-Compass

Inner compass level (star plot):
iIndicates related paradigm inspiration &
setting configuration (assumptions)

Inner compass level of supervision:
“rings” on the star plot indicate presence
of supervision. Importantly: supervision is
individual to each dimension!

Outer compass level:
Contains a comprehensive set of
practically reported measures

[ ] OSAKA (Caccia et al., 2020) FedWelT (Yoon et al., 2021) A-GEM (Chaudhry et al., 2019)
Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment VCL (Nguyen et al., 2018) OCDVAE (Mundt et al., 2020b;a)

Compass to Promote Research Transparency and Comparability”, ICLR 2022
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Reach out: martin.mundt@tu-darmstadt.de, ContinualAl or
QueerinAl Slacks, @mundt_martin on Twitter
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