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Week 2: Transfer Learning, Domain Adaptation
& Continual/Lifelong Machine Learning
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Early definition: lifelong ML

Definition - Lifelong Machine Learning - Thrun 1996:
“The system has performed N tasks. When faced with the (N+1)th task,
it uses the knowledge gained from the N tasks to help the (N+1)th task.”

“Is Learning The n-th Thing Any Easier Than Learning the First?” (NeurlPS 1996) & “Explanation
based Neural Network Learning A Lifelong Learning Approach”, Springer US, 1996
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What is knowledge in a machine learning system?



Never-ending language learner GG oo conimadl & hessian.al (5 BT
Knowledge is a lot more than just parameters
NELL Architecture e Ran 24/7 from 2010-2018
e * Accumulated over 50 million candidate
_ Beliefs _«1— Knowledge “beliefs” by reading the web
| ntegrator
e T e Relational database
A
I I T - e Facts: barley is a grain
L { | [ | | |
Text Orthographic | || URL specific Human * Beliefs: sportUsesEquip (soccer, balls)
Context classifier HTML advice
patterns patterns
(CPL) (CML) (SEAL)
Actively Infer new Image Ontology
search for beliefs from classifier extender
web text old
(OpenEval) (PRA) (NEIL) (OntExt)

“Towards an Architecture for Never-Ending Language Learning”, Carlson et al, AAAI 2010
“‘Never-Ending Learning”, T. Mitchell et al, AAAI 2015



Never-ending image learner
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Knowledge is a lot more than just parameters
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Learned facts:

* Monitor is a part of Desktop Computer
* Keyboard is a part of Desktop Computer
* Television looks similar to Monitor

“NEIL: Extracting Visual Knowledge form Web Data”, X. Chen et al, ICCV 2013
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Early definition: lifelong ML

Definition - Lifelong Machine Learning - Thrun 1996:
“The system has performed N tasks. When faced with the (N+1)th task,
it uses the knowledge gained from the N tasks to help the (N+1)th task.”

e |s data accumulated? Stored?
e \What are the ways to “help” the (N+1)th task?
 What is knowledge”? What is a task?

“Is Learning The n-th Thing Any Easier Than Learning the First?” (NeurlPS 1996) & “Explanation
based Neural Network Learning A Lifelong Learning Approach”, Springer US, 1996
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Learming Process of Transfer Learming

Leamung Process of Traditional Machine Learming

Knowledge

LD flerent Tasks Source Tasks Target Task

COE @ '
l l \ Knowledge
- RSl e O

“A Survey on Transfer Learning”, Pan and Yang, IEEE “A Comprehensive Survey on Transfer Learning”,

Knowledge

Transfer

B & @
§ 4 4
e )

Transactions on Knowledge & Data Engineering, 2010 Zhuang et al, Proceedings of IEEE, 2020

"Help the (N+1th) task!”: Assume that we already have “knowledge”/
a model based on Initial task(s) -> the essence of transfer learning
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What types of shifts can you think of?



Dataset

shifts

Original Data

Covariate Shift

No Data Shift

(a) Original data

S—

p(x) c hanges

(b) Covariate shift

@W&&. Continual Al

Label Shift

p(y) Changes
(c) Label shift

Figure from “Understanding Dataset Shift and Potential Remedies”, Vector Institute Technical Report, 2021
See also: “Dataset Shift in Machine Learning” book, MIT Press 2009

Concept Shift

Q
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P(y | X) Changes
(d) Concept shift
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Definition - Transfer Learning - Pan & Yang 2009:
“Given a source domain D, and learning task 7 , a target domain D, and learning

task T, transfer learning aims to help improve the learning of the target predictive

function f,.(.) in D, using the knowledge in D;and 7, where D.# D, or T, # I ;.”

e Domain D
e JTask

e Source S
e Target T

“A Survey on Transfer Learning”, Pan & Yang, IEEE Transactions on Knowledge and Data Engineering 22(10), 2009
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Definition - Domain & Task - Pan & Yang 20009:
"Given a specific domain, D = { ', p(x)}, a task consists of two components: a label

space Y and an objective predictive function f() (denoted by T = {Y, ()}, which is
not observed but can be learned from the training data, which consist of pairs

{(x" vy where x" € X and yW € Y.”

 Domain D: a pair of data distribution p(x) and corresponding feature space
e Task g find a function f() (to map to labels in the case of supervision)

 Where generally & # 2 .0r po(x) # py(x)

“A Survey on Transfer Learning”, Pan & Yang, IEEE Transactions on Knowledge and Data Engineering 22(10), 2009
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Definition - Transductive Transfer Learning - Pan & Yang 2009:
“Given a source domain D, and learning task 7 , a target domain D, and learning
task T ., transductive transfer learning aims to help improve the learning of the

target predictive function f-( .) in D using the knowledge in D, and & ., where
Di#D;and T ,= 9 ;.°

» Feature spaces between the source and target are different . # X
» Feature spaces between source and target are the same, but p.(x) # p(x)

 Frequently encountered as domain adaptation or sample selection bias

“A Survey on Transfer Learning”, Pan & Yang, IEEE Transactions on Knowledge and Data Engineering 22(10), 2009
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Definition - Inductive Transfer Learning - Pan & Yang 2009:
“Given a source domain D, and learning task 7 , a target domain D, and learning

task 7 ., inductive transfer learning aims to help improve the learning of the target

predictive function f,(.) in D, using the knowledge in D, and 7, where T # ..

(A few) (labeled) data points are required to “induce” the target predictive function

“A Survey on Transfer Learning”, Pan & Yang, IEEE Transactions on Knowledge and Data Engineering 22(10), 2009
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What do you think are the central questions & measures of
success for transfer learning?
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(Some) central questions

1. What to transfer: some knowledge is domain or task specific or may be more general/
transferable

2. When to transfer: when does transfer help or when does it even hurt?
3. How to transfer: algorithms to actually include, transfer/combine knowledge

(Some) central objectives

1. Improved loss/more accurate function in direct comparison to learning just on the target
2. Accelerate learning

3. Reduce data dependence (of target)
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Examples of transfer learning approaches



Transductive transfer GWILIE e contnlAl - &2 hessian.A

Source training data Target training data
0.9} Ty 0 i
R s PR n?....,..d .......................................................... Qo ..............
® 0 /1 4\ Hyperplanes o 1
S 17 0 should be 1 0
= 0 : 0
& i qf y~ retained ;
B, | ceccsccccnces -0.'....::..40 .......................................................... o. ....... Q .............
0.1+ . "< _Hyperplanes need to move 0
+ — — +——
0.1 0.5 0.9
Feature 1

“Discriminability-Based Transfer between Neural Networks”, L. Y. Pratt, NeurlPS 1992
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Early approaches transfer by
identifying the amount that a
specific hyperplane helps to
separate the data into
different classes (& then
reweighting/reinitializing).
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A domain adaptation example through feature transformation

Source domain Augmented Feature Space Target domain

Fig. 1. Samples from different domains are represented by different features, where red crosses, blue strips, orange triangles and green cir-
cles denote source positive samples, source negative samples, target positive samples and target negative samples, respectively. By using two
projection matrices P and Q, we transform the heterogenous samples from two domains into an augmented feature space.

“Learning with augmented Features for Supervised and Semi-Supervised Heterogeneous Domain Adaptation”, Wen Li et al, TPAMI 2014
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A small interlude/recap: convolutional neural networks



A small recap:

Class scores

f

TRAINABLE CLASSIFIER MODULE

t

Feature vector

f

FEATURE EXTRACTION MODULE

f

Raw input

- & Al @2 h AR DR
convolutional NN GU/LLE o contnaAl &2 hessian.Al (53 S
C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16 @5x5
30432 6@28x28 So: f
6@14;?184S I r ?250 layer F6 layer OUTPUT
d \\
—

I Full conAectlon ‘ Gausman connections

Convolutions Subsampling Convolutlons Subsampllng Full connection

e Convolutions: multiple learnable patterns, “weight-sharing” - sliding window

e Pooling: not learned dimensionality reduction, also e.g. local invariance

e Modern advances like dropout, batch-norm etc. of which some are learnable

e |f you don’'t know how learning/training works, don’t worry, we'll visit this next week

“Gradient-Based Learning Applied to Document Recognition”, LeCun et al, Proceedings of the IEEE, 1998



A small recap: convolutional NN GUWILLE o cninal & hessian.a

Convolutions: multiple learnable patterns,
‘weight-sharing” - sliding window
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https://deepai.org/machine-learning-glossary-and-terms/convolutional-neural-network
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Key hypothesis: early layers learn generic patterns, deeper layers become
iIncreasingly more specific

“ImageNet Classification with Deep Convolutional Neural Networks”, Krizhevsky et al, NeurlPS 2012



A small recap: convolutional NN GUWILLE o cninal & hessian.a

™y

convl pl nl1 conv2 p2 n2 conv3 conv4 eonvd pS fc6 fc7 fe8 prob

. | whole layer

- *
selected channel

fwd convd__ 151 Back: deconv (from convd_1951, disp raw) | Boost: 0/1

“Understanding Neural Networks Through Deep Visualization”, Yosinski et al, ICML Deep Learning Workshop, 2015

gradient ascent.
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Transfer learning in deep learning
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(Inductive) ImageNet transfer GUILILE o contnaAl &2 hessian.Al

O War [| Wag [| Was (| Was []| Was (] Was (| War [| Was (O
O O
R R R R I =l [ e Split Imagenet into 2 sets of
O O
o U U U U U"U"U" "k 500 classes: Aand B
/i\ N N N N N N @
mpms §1abels -  “Lock” different sets of
B B ase .
: u e layers/representations &
QW (Ve V) (| (| [ [ @ randomly initialize upper
5 e 2 o B3B .
0 o | [ [ e and remaining layers
O = = uon] = ] |@
SV e e Alternatively: continue
@ Wi (| Wi [] Was () i : i . - @
| lal || lal |[fal || EL | EALI AL 2Ll | L8 s training/fine-tuning
@ |« o o | i O A3B"
Hiel |l |l Al Rl |l Rl [l transferred layers

“How transferable are features in deep neural networks”, Yosinski et al, NeurlPS 2014



(Inductive) ImageNet transfer G o connwsAl - & hessian.A

5: Transfer + fine-tuning improves generalization

0.64}
3: Fine-tuning recovers co-adapted interactions

©
o
N

2: Performance drops
due to fragile
co-adaptation

4: Performance
drops due to
representation
specificity

O
o
o

&
U
o)

Top-1 accuracy (higher is better)

0.56f

0.54—

Layer n at which network is chopped and retrained

“How transferable are features in deep neural networks”, Yosinski et al, NeurlPS 2014
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2. B-B: copied from B and frozen
+ random rest trained on B

3. B-B+: copied features are
allowed to adapt/fine-tune

4. A-B: transfer from A to B with
frozen layers

5. A-B+: transferring + fine-tuning
from Ato B



(Inductive) ImageNet transfer

GWILILE oo continuaAl - &2 hessian.Al

1: Feature
learning

2 : Feature
transfer

3 : Classifier
learning

Training images

Convolutional layers Fully-connected layers

C1-C2-C3-C4-C5

4096 or
6144-dim

\ ) vector

< .axcx\e%

Ny

Training images Sliding patches

FC8

Source task labels

p—

E African elephant

Wall clock
Green snake

Yorkshire terrier

Transfer
parameters

—| C1-C2-C3-C4-C5

4096 or
6144-dim
9216-dim 4096 or vector
vector 6144-dim
vector

New adaptation
layers trained
on target task

- Chair

D Background
» FCa —> FCb —> -

Target task labels

“Learning and Transferring Mid-Level Image Representations using
Convolutional Neural Networks”, Oquab et al, CVPR 2014
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(Inductive) ImageNet transfer
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Pre-training on ImageNet (e.g. 59 bird species and 120 dog breeds)
for the task on Pascal VOC 2012 (bird and dog class)

plane bike bird boat btl bus car cat chair cow table dog
NUS-PSL[°1]]| 97.3 84.2 80.8 85.3 60.8 89.9 86.8 89.3 754 77.8 75.1 83.0
NO PRETRAIN | 85.2 75.0 694 66.2 48.8 82.1 795 79.8 624 619 498 759
PRE-1000C 93.5 78.4 87.7 809 57.3 85.0 81.6 89.4 669 738 62.0 895
PRE-1000R 932 779 83.8 80.0 55.8 82.7 79.0 84.3 66.2 71.7 595 834
PRE-1512 946 829 88.2 84.1 60.3 89.0 84.4 90.7 72.1 86.8 69.0 92.1

“Learning and Transferring Mid-Level Image Representations using
Convolutional Neural Networks”, Oquab et al, CVPR 2014

Pascal VOC

ImageNet
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The role of embeddings:
few-shot and one-shot transfer



ESNEEN
EENEEN
e
e 1 5 156 sl 0

[0.881, 0.974, ..)

(0327, 0427, .] — |

N 1 ISl
< —~ (0691, 0257, ..] —
s RNNE

TENNEDE

A randomized set of one million images is fed through the
network, collecting one random spatial activation per
image.

“Activation Atlas”, Carter et al, Distill 2019

The activations are fed through UMAP to reduce them to
two dimensions. They are then plotted, with similar
activations placed near each other.

We then draw a grid and average the activations that fall
within a cell and run feature inversion on the averaged
activation. We also optionally size the grid cells
according to the density of the number of activations
that are averaged within.

TECHNISCHE
UNIVERSITAT
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ACTIVATIONS FOR FIREBOAT ACTIVATIONS FOR STREETCAR
g * =
) =
A : Ny it v |
» ! .
7 s
-
= FIREBOAT
e i

STREETCAR

“Activation Atlas”, Carter et al, Distill 2019



Few-shot learning

Compute prototype c as the mean
vector of each class with
parametrized embedding function of a
support set of labelled examples

(2) Few-shot (b) Zero-shot Given a distance function d, classify

Figure 1: Prototypical networks in the few-shot and zero-shot scenarios. Left: Few-shot prototypes dCCO rding to softmax over distances
cr are computed as the mean of embedded support examples for each class. Right: Zero-shot

prototypes c;. are produced by embedding class meta-data vi. In either case, embedded query points to the prototypeS In embeddi Nng Space
are classified via a softmax over distances to class prototypes: py(y = k|x) o< exp(—d(fs (%), ck)).

“Prototypical Networks for Few-shot Learning”, Snell et al, NeurlPS 2017

See also “Object Classification from a Single Example Utilizing Class relevance Metrics”, M. Fink,
NeurlPS 2004 & “One-shot Learning of Object Categories”, Fei-Fei et al, TPAMI 2006
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"We say that a set of classes is y > 0 separated with respect to a distance function
d if for any pair of examples belonging to the same class {(x;, ¢), (x;,c)}, the

distance d(x, x;) is smaller than the distance between any pair of examples from

different classes {(x,,e), (x5, g)}by at least y: d(x, x;) < d(x,,x,) —y."

1. Learn from extra sample a distance function d that achieves gamma separation
2. Learn a nearest neighbor classifier, where the classifier employs d

“Object Classification from a Single Example Utilizing Class relevance Metrics”, M. Fink, NeurlPS 2004
See also “One-shot Learning of Object Categories”, Fei-Fei et al, TPAMI 2006



Few-shot learning

Common approach: measures of maximum mean discrepancy or \Wasserstein distance

1 1
Coa { (i1 — p2l2 + |52 — =3 \|%rob}}

red head
pink belly
brown wings
gray beak

“Generalized Zero- and Few-Shot Learning via Aligned Variational Autoencoders”, Schoenfeld et al, CVPR 2019

—
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Why is transfer challenging?
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How would you separate this data with a set of hyperplanes? (Try 3)




Transfer challenges GWILLE = conimaal @2 hessian.al

1.0 HUl 1.0

Feature 2
— o
-
o
Feature 2

0.0} U3 0.0

0.0 1.0 0.0 1.0
Feature 1 Feature 1

Figure 2: Two examples of hyperplane sets that separate
training data in a small network.

“Direct Transfer of Learned Information Among Neural Networks”™ , L. Y. Pratt et al, AAAI 1991



Not intuitive if transfer works GWILILE o contnusAl - &2 hessian.Al

<—Training from scratch:
e Alexnet: 66.98 %
e VGG-A: 70.45%
e VGG-D: 70.61%

Transfer learning

Architecture Source Accuracy [%]
“Meta-learning Convolutional Neural Architectures for Multi-target Concrete Defect Classification
with the Concrete Defect Bridge Image Dataset”, Mundt et al, CVPR 2019
Alexnet ImageNet 62.87
VGG-A ImageNet 66.35
VGG-D ImageNet 65.56
Densenet-121  ImageNet 57.66
Alexnet MINC 66.50
VGG-D MINC 67.14

Ceramic 1 Foliage
“Material Recognition in the Wild with the Materials in Context Database, CVPR 2015”
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s selective transfer a solution? GU/LIE = comeal & hessiana

Alternatively to selecting entire layers, freezing the weights or letting them partially
adapt, we could also try to select and inject only the features that are
‘representative” for the new task

TABLE III: Performance (accuracy) comparison for different

. . tasks. M: Material features learned using MINC. O: Object
e For instance: pICk only features that features learned using ILSVRC2012. MO: Concatenated ma-

: . terial and object features (x. € F). SMO: Features integrated
have |ar99 activations using the proposed method (x. € S).

Task M (%) 0 (%) MO (%) SMO (%)

FMD 80.4+19 | 796+21 | 79.1+25 | 823+1.7
FMD-2 | 82.54+20 | 829+1.6 | 839+18 | 84.0+1.8
EFMD | 88.74+0.2 | 88.8+0.3 | 89.7+0.13 | 89.7+0.16

MINC-val | 82.45 [22] 68.17 83.48 83.93

MINC-test | 82.19 [22] 68.04 83.12 83.60

“Integrating Deep Features for Material Recognition”, Zhang et al, ICPR 2016



Representation Bias

Representations are biased in ways that we don't anticipate: texture bias

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4%  Indian elephant 71.1%  tabby cat 63.9% Indian elephant
103%  indri 17.3% grey fox 264%  indri

82%  black swan 33% Siamese cat 9.6% black swan

“ImageNet-trained CNNS are biased towards texture”, Geirhos et al, ICLR 2019
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Representations are biased in ways that we don't anticipate: adversarial features

Robust dataset

good standard accuracy
good robust accuracy

-4

Unmodified
test set

good standard accuracy
bad robust accuracy

Training image \ . »
Non-robust dataset

“Adversarial Examples are not Bugs, they are Features”, llyas et al, NeurlPS 2019



Clever Hans predictors

Representations are often biased in ways that we don’t anticipate: confounders

Horse-picture from Pascal VOC data set

Source tag
present

'

Classified
as horse

No source
tag present

'

Not classified
as horse

“Unmasking Clever Hans Predictors”, Lapuschkin et al, Nature Communications 2019
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Representations are often biased in ways that we don't anticipate: pitfalls of simplicity

Simplicity Bias in Neural Networks (NNs)
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“The Pitfalls of Simplicity Bias in Neural Networks”, Shah et al, NeurlPS 2020
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Can you think of other ways to transfer knowledge?
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Learning from “hints”

"A hint is any piece of information about the function f. As a matter of fact, an
Input-output example is a special case of a hint. A hint may take the form of a
global constraint on f, such as a symmetry property or an invariance.”

Abu-Mostafa, “Learning from Hints in Neural Networks”
Journal of Complexity 6, 1990
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We could directly include in- or equivariance into our representations (e.g. rotation)

AR
L e
\.n/‘ \,D/

Figure 1. A p4 feature map and its rotation by 7.

“Group Equivariant Convolutional Networks”, Cohen & Welling, ICML 2016
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We could also incorporate a degree of scale invariance, or even try to learn it

fully-connected layers (fcg, fc7)

|

fixed-length representation

E— — ... E— — —
'a A I
E— — ... B I — m—
A 16x256-d £ 4x256-d & 256-d

crop warp y, ‘ v
image - crop / warp »> conv layers » fc layers » output / // // . / / /
. | . ‘ ‘ ~ ~

spatial pyramid pooling layer

image - conv layers » spatial pyramid pooling b fc layers » output

feature maps of convs
(arbitrary size)

f convolutional layers
input image

“Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition”, K. He et al, TPAMI 2015
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Light Incremental Weather Incremental

We could pre-process & account for
Illumination changes

Table 1: Incremental lighting experiment
under consideration of a photometric color
invariant or local binary patterns (LBP).

Accuracy (%]

Illumination Naive Naive + Naive +

Intensity photometric LBP
[Lux] color invariant

76.8 99.20 98.66 99.18

9] 2048 .88

19.2 97.11 98.61 99.27

+116 +0.08 £0.09

9.6 93.55 98.61 99.26

+37 +0 36 +0.03

2.4 91.55 97.56 99.42

398 2078 3,98

1.2 90.89 95.28 99.40

£330 +307 £0.04

“A Procedural World Generation Framework for Systematic Evaluation of
Continual Learning”, Hess et al, NeurlPS 2021
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Making use of invariance

We could assume that RGB color ratios are
qguasi invariant with white illumination:

¢, = arctan(R/max{G, B})

(Gevers & Smeulders, “Color Based Object
Recognition”, Pattern Recognition 32:3, 1999)
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Alternatively: local binary patterns (He & Wang, Pattern Recognition 23:8, 1990)
(simplified): mark all nearest neighbors for a pixel with O if greater and 1
otherwise, compute histogram over values to create features
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Back to lifelong learning
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Early definition: lifelong ML

Definition - Lifelong Machine Learning - Thrun 1996:
“The system has performed N tasks. When faced with the (N+1)th task,
it uses the knowledge gained from the N tasks to help the (N+1)th task.”

* \WWe have looked primarily at positive transfer today
| et us now look at training & avoiding negative transfer (or forgetting)

“Is Learning The n-th Thing Any Easier Than Learning the First?” (NeurlPS 1996) & “Explanation
based Neural Network Learning A Lifelong Learning Approach”, Springer US, 1996
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Later definition: lifelong ML

Definition - Lifelong Machine Learning - Chen & Liu 2017
“Lifelong Machine Learning is a continuous learning process. At any time point, the learner
performed a sequence of N learning tasks, ,,5 ,, ..., , - These tasks can be of the same

type or different types and from the same domain or different domains. When faced with

the (N+1)th task 7, , (which is called the new or current task) with its data D, ,, the

learner can leverage past knowledge in the knowledge base (KB) to help learn 7, ,.

The objective of LML is usually to optimize the performance on the new task 7 ,,,,, but it

can optimize any task by treating the rest of the tasks as previous tasks. KB maintains the
knowledge learned and accumulated from learning the previous task. After the completion

of learning 7 ., KB Is updated with the knowledge (e.g. intermediate as well as the final

results) gained from learning 7. ,. The updating can involve inconsistency checking,

reasoning, and meta-mining of additional higher-level knowledge.”

“Lifelong Machine Learning”, Chen & Liu, Morgan Claypool, 2017



