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Recall: lifelong ML

“Lifelong Machine Learning”, Chen & Liu, Morgan Claypool, 2017 

Definition - Lifelong Machine Learning - Chen & Liu 2017:  
“Lifelong Machine Learning is a continuous learning process. At any time point, the learner 
performed a sequence of N learning tasks,  .These tasks can be of the same 

type or different types and from the same domain or different domains. When faced with the 
(N+1)th task  (which is called the new or current task) with its data , the learner can 

leverage past knowledge in the knowledge base (KB) to help learn .  

The objective of LML is usually to optimize the performance on the new task , but it can 

optimize any task by treating the rest of the tasks as previous tasks. KB maintains the 
knowledge learned and accumulated from learning the previous task. After the completion of 
learning , KB is updated with the knowledge (e.g. intermediate as well as the final results) 

gained from learning . The updating can involve inconsistency checking, reasoning, and 

meta-mining of additional higher-level knowledge.” 
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Recall: shifts & transfer

Figure from “Understanding Dataset Shift and Potential Remedies”, 
Vector Institute Technical Report, 2021

“Discriminability-Based Transfer between Neural Networks”,  
L. Y. Pratt, NeurIPS 1992

In transfer learning, if we equate knowledge with learned parameters, we will very likely 
have some degree of forgetting of how to perform on the source task 



How humans learn continually

Flesch et al, “Comparing continual task learning in minds and machines”, PNAS 115, 2018

When do you think humans 
do well in this? 



How humans learn continually

Flesch et al, “Comparing continual task learning in minds and machines”, PNAS 115, 2018

Humans seem to actively benefit from temporal correlation during “training”.

They do well if trees sensibly follow leaf & branch density 



How machines learn

Flesch et al, “Modelling continual learning in humans with Hebbian context gating and exponentially decaying task signals”, PLOS Computational Bio, 2023



How machines learn

Machine learning typically shuffles data & performs poorly when data is ordered

Flesch et al, “Modelling continual learning in humans with Hebbian context gating and exponentially decaying task signals”, PLOS Computational Bio, 2023



Humans & machines are not alike

Ray Solomonoff’s 
notes on Ross 
Ashby’s talk, 

Dartmouth 1956

Old Problems,  
Old IdeasCatastrophic Interference  

(McCloskey & Cohen 89)



Week 3: Optimization & Knowledge Retention



An intuitive example: K-means

Naive k-means (Lloyd’s algorithm)  

1. Initialization: randomly generate initial set of k means m_1, …, m_k 
2. Assignment: Assign each observation to cluster with nearest mean  
3. Update: 

https://en.wikipedia.org/wiki/K-means_clustering , shared under Creative Commons license 

https://en.wikipedia.org/wiki/K-means_clustering


Abrupt & gradual forgetting

https://en.wikipedia.org/wiki/File:K-means_convergence.gif 
Shared under Creative Commons license 

When will it be surprising to see that we forget if 
we add new data?

https://en.wikipedia.org/wiki/File:K-means_convergence.gif


Abrupt & gradual forgetting

When will it be surprising to see that we forget if 
we add new data? 

• Number of clusters? 

• Data isn’t accumulated but replaced, mean 
changes abruptly  

• Considerations such as exponentially moving 
average of the mean? 

https://en.wikipedia.org/wiki/File:K-means_convergence.gif 
Shared under Creative Commons license 

https://en.wikipedia.org/wiki/File:K-means_convergence.gif


Linear regression
Another intuitive example https://github.com/PyMLVizard/PyMLViz 

𝑦(𝑥) = 𝒘𝑻𝒙 + 𝜖 =  
𝐷

∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝜖 

https://github.com/PyMLVizard/PyMLViz


Optimization: risk & losses

What we would like to generally do is minimize the 
following scenario:  

Find a hypothesis or decision procedure:  

 

and define the risk or expected loss as: 

 

Where  is data from the true distribution, 
represented by parameter  

δ : 𝒳 → 𝒜

R(θ*, δ) = 𝔼p(D̃|θ*) [L(θ*, δ(D̃))]

D̃
θ*

Pages 197-209 



Optimization: risk & losses

 

The challenges:  

• Cannot actually compute above risk (usually 
don’t know the distribution) 

• Besides: if we think of e.g. binary 
classification, i.e. a 0-1 measure, it can be 
hard to optimize as it is not smooth  

R(θ*, δ) = 𝔼p(D̃|θ*) [L(θ*, δ(D̃))]

Pages 197-209 



Optimization: risk & losses

 

instead:  

But can look at the true but unknown response and 
our predictions  given an input x.  

As we still do not know the true distribution, we can 
also use empirical estimates: 

R(θ*, δ) = 𝔼p(D̃|θ*) [L(θ*, δ(D̃))]
R(p*, δ) = 𝔼(x,y)∼p* [L(y, δ(x))]

δ(x)

Remp(D, δ) = 1/N
N

∑
i=1

L(yi, δ(xi))

Pages 197-209 



Optimization: risk & losses

Pages 197-209 

 

We then usually chose a loss function, e.g. the 
mean squared error (supervised): 

 

or similarly an unsupervised reconstruction: 

Remp(D, δ) = 1/N
N

∑
i=1

L(yi, δ(xi))

L(y, δ(x)) = (y − δ(x))2

L(y, δ(x)) = | |x − δ(x) | |2
2



Optimization: gradient descent

There are various optimization algorithms, the most popular ones are perhaps: 
(Stochastic) gradient descent - SGD and expectation maximization (EM) 

Let us consider (S)GD here, as the “workhorse” underlying a lot of deep learning: 

• In the simple form, a first order optimization algorithm to find a minimum of a 
differentiable function  

• Achieved by iteratively taking (small) steps in the gradient direction of a function f in 
the direction in which it decreases the fastest: 

 xn+1 = xn − λ∇f(xn) where f(x0) ≥ f(x1) ≥ … ≥ f(xn)



Optimization: gradient descent

We can easily transfer this concept to the idea of parameters and losses: 

 

Then iterative updates become (where in neural nets we backpropagate gradients): 

 

Let us talk about gradient estimates, stochasticity, step sizes, and ultimately the idea of 
forgetting with interactive examples

L(θ) = 1/N
N

∑
i=1

Li(θ))

θ ← θ − λ∇L(θ) = θ − λ/N
N

∑
i

∇Li(θ)



Forgetting & SGD



Forgetting & SGD

Assume the previous extremum wasn’t there in “task” 1 



Forgetting & SGD

But now it gets added because new data is observed 



Forgetting & SGD

But now it gets added because new data is observed & noise is very large



Forgetting & SGD

But now it gets added because new data is observed & noise is very large

Or prior data 
is no longer 
accessible



How can we alleviate forgetting?



How do we alleviate forgetting?

The undesired trivial solution: large amounts of parameters + data accumulation 
But also, caution, if we are constrained by capacity, we won’t learn indefinitely! 

Keep in mind however (transfer): 
if the number of parameters is limited & 
already learned, it will become 
increasingly difficult to encode new 
concepts (e.g. on the right example of 
permuting the data points over time)  

Continual Backprop: Stochastic Gradient Descent with Persistent 
Randomness, Dohare et al, arXiv preprint:2108:06325 



How do we alleviate forgetting?
Regularize important parameters (today):  
Either identify relevant parameters for a task and make 
sure they do not change much, or make sure the input 
output relationship remains the same 

Rehearsal:  
Either store a subset of old data to rehearse or make use 
of a generative model to generate old task data


Modify the architecture:  
Either use task specific masks in an overparameterized 
model or grow/expand the architecture


Categorization found in several recent reviews, e.g. Parisi 
2019, DeLange 2019, Biesialska 2020, Hadsell 2020…, 
but outlined mostly already in McCloskey & Cohen 1989, 
Ratcliff 1990, French 1999 and many more Figure from “A Wholistic View of Deep Neural Networks: Forgotten Lessons and the Bridge 

to Active and Open World Learning”,  Mundt et al, Neural Networks 2023, (arxiv 2020)



Some early thoughts

Rehearsal

Modifying the model 

Most definitely not the earliest, but very intuitive examples!  
Ideas date back to at least the 70s, even the 50s. 

McClelland et al, “Why there are complementary learning systems in the hippocampus 
and neocortex”, Psychological Review 102, 1995 (see also Robins 1995) 

R. French, “Using semi-distributed representations to overcome 
catastrophic forgetting in connectionist networks”, AAAI 1993 



How do we alleviate forgetting?

Hadsell et al, “Embracing Change: Continual 
Learning in Deep Neural Networks”, Trends in 

Cognitive Sciences 24:12, 2020 



Stability - plasticity (sensitivity)

For “regularization approaches”, what we are essentially interested in is the so called stability - 
plasticity (or sensitivity) dilemma (Hebb, “The organization of behavior”, 1949).  

Hadsell et al, “Embracing Change: Continual Learning in Deep Neural Networks”, Trends in Cognitive Sciences 24:12, 2020 



“There exists in the mind of man a block of wax … harder, moister, and having more or less of 
purity in one than another… the soft are good at learning, but apt to forget; and the hard 
are the reverse” 

– Plato, Theaetetus, ~369 BCE

Old Problems,  
Old Ideas

Stability - plasticity (sensitivity)



1. Finding and regularizing important parameters



Elastic weight consolidation

Kirkpatrick et al, “Overcoming catastrophic forgetting in neural networks”, PNAS 114(13), 2017



Elastic weight consolidation

Kirkpatrick et al, “Overcoming catastrophic forgetting in neural networks”, PNAS 114(13), 2017

 

Instead of naively continuing to optimize task B, we can 
impose a penalty on previously learned parameters 
(assuming over-parameterization).  

We will need to find a matrix F that tells us which parameters 
are most important for task A. 
 
Example: Fisher information (related to natural gradients, 
the second derivative of the loss near a minimum, can be 
approximated). We will skip the details here for simplicity. 
(https://agustinus.kristia.de/techblog/2018/03/11/fisher-
information/ provides a nice summary)  

L(θ) = LB(θ) + ∑
i

λ
2

Fi(θi − θ*A,i)
2

https://agustinus.kristia.de/techblog/2018/03/11/fisher-information/
https://agustinus.kristia.de/techblog/2018/03/11/fisher-information/
https://agustinus.kristia.de/techblog/2018/03/11/fisher-information/


Elastic weight consolidation

Kirkpatrick et al, “Overcoming catastrophic forgetting in neural networks”, PNAS 114(13), 2017

 

Instead of naively continuing to optimize task B, we can 
impose a penalty on previously learned parameters 
(assuming over-parameterization).  

We will need to find a matrix F that tells us which parameters 
are most important for task A. 
 
Example: Fisher information (related to natural gradients, 
the second derivative of the loss near a minimum, can be 
approximated). We will skip the details here for simplicity. 
(https://agustinus.kristia.de/techblog/2018/03/11/fisher-
information/ provides a nice summary)  

L(θ) = LB(θ) + ∑
i

λ
2

Fi(θi − θ*A,i)
2

https://agustinus.kristia.de/techblog/2018/03/11/fisher-information/
https://agustinus.kristia.de/techblog/2018/03/11/fisher-information/
https://agustinus.kristia.de/techblog/2018/03/11/fisher-information/


Parameter importance intuition

Achille et al, “Where is the information in a deep neural 
network”, UCLA-TR:190005, 2019 



Synaptic intelligence

Here, “synapse” synonymous with parameter.  

Key idea: change (with time t) in loss is well approximated by the gradient (g): 

 

Each parameter change  contributes amount  to the change in total loss.  

Assign an importance to each parameter according to the monitored trajectory and formulate 
a similar penalty to EWC again (with a different measure of importance).

L(θ(t) + δ(t)) − L(θ(t)) ≈ ∑
k

gk(t)δk(t)

δk(t) = θ′ 

k(t) gk(t)δk(t)



2. Maintaining (input-output) relationships



Knowledge distillation

Alternatively, we know that if we have enough parameters, there are many potential 
solutions to produce the same input-output relationships.  

Key idea: Let’s try to maintain a task’s input-output relationship

Gou et al, “Knowledge Distillation: A survey”, International Journal of Computer Vision 129, 2021



Knowledge distillation

1
T

(qi − pi) =
1
T

exp(zi/T)
∑j exp(zj /T)

−
exp(vi/T)

∑j exp(vj /T)



Knowledge distillation
Special case: classifier logits (Hinton et al, 

“Distilling the Knowledge in A Neural Network”, 
NeurIPS 2014 Deep Learning Workshop):  

 

Normally T=1, for higher T softer probability 
distributions are produced.  

In essence we are making sure that the distance 
between z and v of two models is minimized, or 
more generally minimizing the KL divergence 
over the two probability distributions.  

qi =
exp(zi/T)

∑j exp(zj /T)

1
T

(qi − pi) =
1
T

exp(zi/T)
∑j exp(zj /T)

−
exp(vi/T)

∑j exp(vj /T)



Knowledge distillation

Apart from continual learning (on the next slides), why would we like to distill? 

Gou et al, “Knowledge Distillation: A survey”, International Journal of Computer Vision 129, 2021



Knowledge distillation 

Gou et al, “Knowledge Distillation: A survey”, International Journal of Computer Vision 129, 2021

We generally have various choices 
of what types of relationships we 
wish to distill (and how)



Continual knowledge distillation

Learning without forgetting 
 (Li & Hoiem, “Learning without 
Forgetting”, ECCV 2016) 

Key idea: compute task “head” with new 
data and continue to preserver this 
input-output relationship, while 
learning a new task “head” 
simultaneously



Continual knowledge distillation

But “cross-talk” can be challenging, if we don’t dedicate an individual expert to each task 

Especially true for e.g. Softmax layers that normalize over the entire output vector  

Let’s discuss if expert outputs are desirable when we learn about structure changes 

Li & Hoiem, “Learning without Forgetting”, ECCV 2016



Continual knowledge distillation

Rannen & Aljundi et al, “Encoder Based Lifelong Learning”, ICCV 2017

Has become very popular in continual 
learning & adapted in various ways 

Has been extended to generative models, 
(shared feature spaces) etc.



Next lectures: D & C

Hadsell et al, “Embracing Change: Continual 
Learning in Deep Neural Networks”, Trends in 

Cognitive Sciences 24:12, 2020 


