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Recall: lifelong ML GWLLE o conovaal - @2 hessian.A

Definition - Lifelong Machine Learning - Chen & Liu 2017
“Lifelong Machine Learning is a continuous learning process. At any time point, the learner

performed a sequence of N learning tasks,  ,5 ,, ..., y -These tasks can be of the same

type or different types and from the same domain or different domains. When faced with the

(N+1)th task T ., (which is called the new or current task) with its data D, ,, the learner can

leverage past knowledge in the knowledge base (KB) to help learn &, ;.

The objective of LML is usually to optimize the performance on the new task 5 ., ,, but it can

optimize any task by ftreating the rest of the tasks as previous tasks. KB maintains the
knowledge learned and accumulated from learning the previous task. After the completion of

learning & .. |, KB is updated with the knowledge (e.g. intermediate as well as the final results)

gained from learning & ;. ;- The updating can involve inconsistency checking, reasoning, and

meta-mining of additional higher-level knowledge.”

“Lifelong Machine Learning”, Chen & Liu, Morgan Claypool, 2017



Recall: shifts & transfer
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Figure from “Understanding Dataset Shift and Potential Remedies”,
Vector Institute Technical Report, 2021
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“Discriminability-Based Transfer between Neural Networks”,
L. Y. Pratt, NeurlPS 1992

In transfer learning, if we equate knowledge with learned parameters, we will very likely
have some degree of forgetting of how to perform on the source task
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Cue Stimulus Response Feedback
_ Accept Reject A t | Reiect
When do you think humans " o
do well in this? *

Time

Flesch et al, “Comparing continual task learning in minds and machines”, PNAS 115, 2018
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Cue Stimulus Response Feedback

Reject

Accept Reject

Leafiness

"’,‘l o

Branchiness Time

Humans seem to actively benefit from temporal correlation during “training”.

They do well if trees sensibly follow leaf & branch density

Flesch et al, “Comparing continual task learning in minds and machines”, PNAS 115, 2018
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[raining order

Blocked
training

Flesch et al, “Modelling continual learning in humans with Hebbian context gating and exponentially decaying task signals”, PLOS Computational Bio, 2023
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[raining order
A

100 | -

Training
Accuracy

o

Blocked

100 K—— training - iSRSNI AR

Lonoept o (oncept fwe

Training
Accuracy

o

Machine learning typically shuffles data & performs poorly when data is ordered

Flesch et al, “Modelling continual learning in humans with Hebbian context gating and exponentially decaying task signals”, PLOS Computational Bio, 2023
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Week 3: Optimization & Knowledge Retention
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Given an initial set of k means m;("),....m, (") (see below), the algorithm proceeds by alternating between two steps:!’]

Assignment step: Assign each observation to the cluster with the nearest mean: that with the least squared Euclidean distance.!®!
(Mathematically, this means partitioning the observations according to the Voronoi diagram generated by the means.)

st — {:z:p ; Ha:p = m,,(:t)H2 < H:cp - mg.t)H2 ¥V3,1 <3< k},

2
where each x,, is assigned to exactly one S (t‘), even if it could be assigned to two or more of them.

Update step: Recalculate means (centroids) for observations assigned to each cluster.

(t+1) 1
m; — ‘ 0 E £ j Demonstration of the standard algorithm
s
1

T ES?')

https://en.wikipedia.org/wiki/K-means clustering , shared under Creative Commons license
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Abrupt & gradual forgetting

When will it be surprising to see that we forget if
we add new data?
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https://en.wikipedia.org/wiki/File:K-means convergence.qgif
Shared under Creative Commons license
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When will it be surprising to see that we forget if e I °
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Shared under Creative Commons license
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Linear regression GWILIE e cortmaial 2 hessian A

Another intuitive example https://github.com/PyMLVizard/PyMLViz

D
yx)=wlx+e= Zwixi+€
i=1

Data set | Linear v
Linear Regression v L2 regularization
Linear
Log lambda 0.01
Redraw

Weights: 0:-0.2127

1:-1.5566

y data

X data


https://github.com/PyMLVizard/PyMLViz
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Optimization: risk & losses GWILILE o connwsAl - @2 hessian.Al

What we would like to generally do is minimize the
following scenario:

Find a hypothesis or decision procedure:

0. X - A

and define the risk or expected loss as:

Machine Learning

A Probabilistic Perspective

Where D is data from the true distribution, Kevin P. Murphy

represented by parameter 6*
Pages 197-209
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Optimization: risk & losses GWILILE o connwsAl - @2 hessian.Al

R(6*,8) = E,pjp+ |L(O*, 5(D)),

The challenges:

 (Cannot actually compute above risk (usually
don’'t know the distribution)

 Besides: if we think of e.g. binary
classification, i.e. a 0-1 measure, it can be
hard to optimize as it is not smooth

Machine Learning

A Probabilistic Perspective

Kevin P. Murphy

Pages 197-209
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R(6*,8) = E,pjp+ |L(O*, 5(D)),
instead: R(p*, 8) = E, o | L, 5(x)))|

But can look at the true but unknown response and
our predictions o(x) given an input Xx.

As we still do not know the true distribution, we can

also use empirical estimates: Machine Learning
N A Probabilistic Perspective
R, (D, 5) = 1/NZ L(y,, 8(x,)) ok i

=1
| Pages 197-209
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N
R,p(D.8) = 1/N )" L(y;, 8(x,))
=1

We then usually chose a loss function, e.g. the
mean squared error (supervised):

L(y, 5(x)) = (y — 6(x))°

or similarly an unsupervised reconstruction: Machine Learning
5 A Probablilistic Perspective
L(y9 5(X)) — ‘ ‘X T 5(.)6) ‘ ‘2 Kevin P. Murphy

Pages 197-209
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There are various optimization algorithms, the most popular ones are perhaps:
(Stochastic) gradient descent - SGD and expectation maximization (EM)

Let us consider (S)GD here, as the “workhorse” underlying a lot of deep learning:

e |n the simple form, a first order optimization algorithm to find a minimum of a
differentiable function

 Achieved by iteratively taking (small) steps in the gradient direction of a function f in
the direction in which it decreases the fastest:

Xop1 = Xy — AV, where  flx) = fx) 2 ... > f(x,)
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We can easily transfer this concept to the idea of parameters and losses:
N
L(0) = 1/N ) L(9))
i=1

Then iterative updates become (where in neural nets we backpropagate gradients):

N
0 — 0—AVL®) =0—i/N ) VL)

Let us talk about gradient estimates, stochasticity, step sizes, and ultimately the idea of
forgetting with interactive examples



Forgetting & SGD

ADAM Gradient Descent

GWILILE oo continuaAl - &2 hessian.Al

Method: | ADAM v
Target: | Bimodal normal v
Redraw > 11 B O
Play speed

Gradient descent parameters:

stochastic gradient descent

Epochs 100
Learning rate 01
Betal 0.90
Beta2 0.98
Start pos x 1.22
Start pos vy

-0.77
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Forgetting & SGD GWILLE o conimead

Assume the previous extremum wasn't there in “task” 1
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But now it gets added because new data is observed
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But now it gets added because new data is observed & noise is very large
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But now it gets added because new data is observed & noise is very large

] . Or prior data /'I

IS no longer
accessible
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How can we alleviate forgetting?
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The undesired trivial solution: large amounts of parameters + data accumulation
But also, caution, if we are constrained by capacity, we won't learn indefinitely!

0.95-

Keep in mind however (transfer): T ———
.—--W
if the number of parameters is limited & 0.93- network-width=1000
already learned, it will become Online  0.91-
: : . Classification
increasingly difficult to encode new ACCUFacy o ao.
concepts (e.g. on the right example of
. . . . 7.
permuting the data points over time) 0
0.85— v ,
0 oM 12M

Example Number

Continual Backprop: Stochastic Gradient Descent with Persistent
Randomness, Dohare et al, arXiv preprint:2108:06325



How do we alleviate forgetting? GG o continiAl &2 hessian.Al 4 i

Regularize important parameters (today): -oxcon |
Either identify relevant parameters for a task and make R oo
sure they do not change much, or make sure the input | R — .
output relationship remains the same g0 | Archi- Combined) . vcian
:m;yﬁﬂ (87] lcapadty tectural prc;zzl-\es  Eminee ?;71
Rehearsal: ol
Either store a subset of old data to rehearse or make use e |
of a generative model to generate old task data T o
LEARNING
Modify the architecture: A | Gmer
Either use task specific masks in an overparameterized B
model or grow/expand the architecture N S
Categorization found in several recent reviews, e.g. Parisi aspl
2019, DelLange 2019, Biesialska 2020, Hadsell 2020..., I
but outlined mostly already in McCloskey & Cohen 1989, ’
RatC“ﬁ 1 990, FrenCh 1 999 and many more Figure from “A Wholistic View of Deep Neural Networks: Forgotten Lessons and the Bridge

to Active and Open World Learning”, Mundt et al, Neural Networks 2023, (arxiv 2020)
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Most definitely not the earliest, but very intuitive examples!
|deas date back to at least the 70s, even the 50s.

Modifying the model

Catastrophic forgetting is a direct consequence of the overlap of
distributed representations and can be reduced by reducing this

overlap.
P R. French, “Using semi-distributed representations to overcome

catastrophic forgetting in connectionist networks”, AAAl 1993

Rehearsal

"The sequential acquisition of new data 1s incompatible with the gradual discovery of
structure and can lead to catastrophic interference with what has previously been
learned. In light of these observations, we suggest that the neocortex may be
optimized for the gradual discovery of the shared structure of events and experiences,
and that the hippocampal system i1s there to provide a mechanism for rapid acquisition
of new information without interference with previously discovered regularities. After
this initial acquisition, the hippocampal system serves as a teacher to the neocortex..."

McClelland et al, “Why there are complementary learning systems in the hippocampus
and neocortex”, Psychological Review 102, 1995 (see also Robins 1995)
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Paradigms for Continual Learning

(A) (B) O = importance
< 00 000 000
Y% Q00O Q00 OXOX0,
Q@00 Q0O Q0O
QOO0 0000 @0dO0
0000 0000 0000

Hadsell et al, “Embracing Change: Continual

- Task 3 Learning in Deep Neural Networks”, Trends in
Cognitive Sciences 24:12, 2020

Time

(C) (D)
@00 @00 @@0 000 DOO 000
o0l0 elel0 eleo 000 00D 0D D
000 eoleld eleld 000 ©-000 [J-000
0000 0000 ©D®O 0ooo ® cooo @ c00O
0000 0000 0000 0000 [H 0000 & 0000

Figure 1. (A) Independent and identically distributed learing methods are standard for nonsequential, multitask learning. In this regime, tasks are learned simultaneously
to avoid forgetting and instability. (B) Gradient-based approaches preserve parameters based on their importance to previously learned tasks. (C) Modularity-based
methods define hard boundaries to separate task-specific parameters (often accompanied by shared parameters to allow transfer). (D) Memory-based methods write

experience to memory to avoid forgetting.



Stability - plasticity (sensitivity) GWILLE o contnaAl - @2 hessian.Al

For “regularization approaches”, what we are essentially interested in is the so called stabillity -
plasticity (or sensitivity) dilemma (Hebb, “The organization of behavior”, 1949).

® Task 2 solution

Trends in Cognitive Sciences

Figure 3. lllustrations of Gradient Descent Optimization for Different Tasks. (A) The trajectory taken by gradient descent optimization when minimizing a loss
corresponding to a single task. (B) The optimization trajectory when subsequently training the same model on a second task. (C) The trajectory taken when using the
total loss from both tasks (black) and the gradients from each individual task at multiple points during optimization (red and blue). See Box 2 for more detailed discussion.

Hadsell et al, “Embracing Change: Continual Learning in Deep Neural Networks”, Trends in Cognitive Sciences 24:12, 2020
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“There exists in the mind of man a block of wax ... harder, moister, and having more or less of
purity in one than another... the soft are good at learning, but apt to forget; and the hard
are the reverse”

— Plato, Theaetetus, ~369 BCE
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1. Finding and regularizing important parameters
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1 Low error for task B == EWC

= Low error for task A = L2
. == NO penalty

|
\
\
\
\
\
\

Kirkpatrick et al, “Overcoming catastrophic forgetting in neural networks”, PNAS 114(13), 2017
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A 2
L) = Ly©®) + ) —F 0= 05)
i —1 Low error for task B == EWC
Instead of naively continuing to optimize task B, we can == Low error for task A = L2

| i . - NO penalty
Impose a penalty on previously learned parameters ( Q
(assuming over-parameterization).

Kirkpatrick et al, “Overcoming catastrophic forgetting in neural networks”, PNAS 114(13), 2017
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Elastic weight consolidation GUVALILE o contnuaiAl - @2 hessian.A

A o 2
L) = Ly©®) + ) —F 0= 05)
i — Low error for task B == EWC
Instead of naively continuing to optimize task B, we can == Low error for task A : rI;c2> senalty
Impose a penalty on previously learned parameters

(assuming over-parameterization).

We will need to find a matrix F that tells us which parameters Ox
are most important for task A.

Example: Fisher information (related to natural gradients,
the second derivative of the loss near a minimum, can be
approximated). We will skip the details here for simplicity.
(https://aqgustinus.kristia.de/techblog/2018/03/11/fisher-
information/ provides a nice summary)

Kirkpatrick et al, “Overcoming catastrophic forgetting in neural networks”, PNAS 114(13), 2017


https://agustinus.kristia.de/techblog/2018/03/11/fisher-information/
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About to learn new feature Learning feature Compression

Batch: 1770 Log-det: 244 Traca: 10.14 Batch: 2100 Log-det: 432 Trace: 37.27 Batch: 2520 Log-det: 336 Trace: 19.81

400
300
3
o0 200
]
p—
100
0
0 500 1500 2000 2500
SGD iterat
\4
Batch: 30 Log-det: -1 Trace: 0.01 Batch: 270 Log-det: 205 Trace: 742 Batch: 420 Log-<det 97 Trace: 2.19

ol
B

Achille et al, “Where is the information in a deep neural
network”, UCLA-TR:190005, 2019

-15 -1.0 -0.5 0.0 05 1.0 15 -15 -10 -05 o0 0s 10 18 -15 -10 -05 00 as 10 15

No feature learned yet Learning feature Compression
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Here, “synapse” synonymous with parameter.

Key idea: change (with time t) in loss is well approximated by the gradient (g):

LO() + 8() — LOM) ~ Y g3 (1)
k
Each parameter change 0,(7) = H,;(t) contributes amount g,(¢)o,(7) to the change in total loss.

Assign an importance to each parameter according to the monitored trajectory and formulate
a similar penalty to EWC again (with a different measure of importance).
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2. Maintaining (input-output) relationships
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Alternatively, we know that if we have enough parameters, there are many potential
solutions to produce the same input-output relationships.

Key idea: Let's try to maintain a task’s input-output relationship

Teacher Model

Transfer

Ga oap oD oG aED G G oD oD

GED GED GNP OED OED TN OED OED OED OED TOED ToE TE» T
D aGED a=» o=

Gou et al, “Knowledge Distillation: A survey”, International Journal of Computer Vision 129, 2021
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Response-Based Knowledge Distillation

— Logits ﬁ

Data Dis;‘il::stion
Logits J
exp(z;/T) exp(v./T)
S (Qz Pi 1) —

ZJ. exp(z;/T) Z]. exp(v;/T)
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Special case: classifier logits (Hinton et al,
“Distilling the Knowledge in A Neural Network”,
NeurIPS 2014 Deep Leaming WOFkShOp)Z Response-Based Knowledge Distillation

exp(z;/T)
ZJ. exp(z;/T)

Normally T=1, for higher T softer probability
distributions are produced.

q; = e Logits —‘

Distillation
Loss

Data

In essence we are making sure that the distance _( g — py) = exp(z;/T) exp(v;/T)
between z and v of two models is minimized, or ZJ- exp(z;/T) ZJ- exp(v;/T)
more generally minimizing the KL divergence
over the two probability distributions.
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Apart from continual learning (on the next slides), why would we like to distill”?

Knowledge Distillation
Student Model

Simplified Structure

Quantized Structure

Same Structure

Small Structure (opitimazed/condensed)

Gou et al, “Knowledge Distillation: A survey”, International Journal of Computer Vision 129, 2021



Knowledge distillation

We generally have various choices
of what types of relationships we
wish to distill (and how)

GWILILE oo continuaAl - &2 hessian.Al

- Relation-Based Knowledge

[ Hint Layers |

| -
e - | \ - :
Input ‘(/“\‘
» \( S . ‘y(/
O N2
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N ,

| [pata k2N
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I :Output Layer|
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Feature-Based Knowledge Response-Based Knowledge

Gou et al, “Knowledge Distillation: A survey”, International Journal of Computer Vision 129, 2021

[PPOJAl JOYIBI L,

Distill
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Input: Target:

-

model (a)’s

Learning without forgetting

sk +  response for
(Li & Hoiem, “Learning without new 1as +.~ [+ =[] oldtasks
L, 1mage
Forgetting”, ECCV 2016)
new task
=
ground truth
Key idea: compute task "head” with new LEARNINGWITHOUTFORGETTING:
Start with:
data and continue to preserver this 0s: shared parameters
0,: task specific parameters for each old task
input-output relatiOnShip, while X, Y,: training data and ground truth on the new task
Initialize:
|earning a hew task “head” Y, < CNN(X,, 05, 0,) // compute output of old tasks for new data
0, < RANDINIT(|0,.|) // randomly initialize new parameters
simultaneously Irain:
Define Y, = CNN(X,, 93, 0,) // old task output
Define Y;, = CNN(Xn, 05, 0,) // new task output
05, 6., 0, < argmin ()\ Lo1a(Yo, f/o) + Lnew(Yn, Yn) + R(és, éo, én))
6s,00,0n
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Input: Target: rand 1nit + train
fine-tune
o
new task A AL unchanged
image g N | new task Net2Net weights
o label ->()-init’d weights

Li & Hoiem, “Learning without Forgetting”, ECCV 2016

But “cross-talk” can be challenging, if we don’t dedicate an individual expert to each task
Especially true for e.g. Softmax layers that normalize over the entire output vector

Let’'s discuss if expert outputs are desirable when we learn about structure changes
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Task specific

operators
Main model N S
Sec. 3.1 T, s
: - ‘ Feature h fShared task\ - g 3
Has become very popular in continual extractor |~ operator r| [ 8
. . . F T o
learning & adapted in various ways - Z S S\ — | 3
g Sec.3.2&
o 3.3
T.| L Cross-entropy
Has been extended to generative models, L)) oss
(shared feature spaces) efc. Encoding of previous
task knowledge . ]
Sec. 3.3 —__AE, 0
—{ AE, |L°
3
—{ AE., J ©

Rannen & Aljundi et al, “Encoder Based Lifelong Learning”, ICCV 2017
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Paradigms for Continual Learning

(A) (B) O = importance
< 00@ 000 000
Y% Q00O Q00 OXOX0,
Q@00 Q0O Q0O
QOO0 0000 @0dO
0000 0000 0000

Hadsell et al, “Embracing Change: Continual

Learning in Deep Neural Networks”, Trends in
Cognitive Sciences 24:12, 2020
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Figure 1. (A) Independent and identically distributed learing methods are standard for nonsequential, multitask learning. In this regime, tasks are learned simultaneously
to avoid forgetting and instability. (B) Gradient-based approaches preserve parameters based on their importance to previously learned tasks. (C) Modularity-based
methods define hard boundaries to separate task-specific parameters (often accompanied by shared parameters to allow transfer). (D) Memory-based methods write

experience to memory to avoid forgetting.



