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Week 4: Rehearsal - Knowledge Retention Part 2



Recall: How to avoid forgetting?

Hadsell et al, “Embracing Change: Continual 
Learning in Deep Neural Networks”, Trends in 

Cognitive Sciences 24:12, 2020 

Last time  
regularization/distillation

Today 
(Pseudo-)Rehearsal



Rehearsal: intuition

“Discriminability-Based Transfer between Neural Networks”,  L. Y. Pratt, NeurIPS 1992

Assuming privacy is not a concern & that we have auxiliary memory:  
some data is more relevant than other, can we retain a subset? 



Rehearsal: intuition

“Discriminability-Based Transfer between Neural Networks”,  L. Y. Pratt, NeurIPS 1992

Assuming privacy is not a concern & that we have auxiliary memory:  
some data is more relevant than other, can we retain a subset? 

Maybe we could store 
these few examples?



Nearest means classifiers

• Get prototype as mean vector of each class 

• Given a distance function d, classify according to 
distances to the prototypes in embedding space   

• Note, nomenclature is inconsistent: prototypes, 
exemplars, core sets (will be defined later) 

“Prototypical Networks for Few-shot Learning”, 
Snell et al, NeurIPS 2017

Recall lecture 2: few shot learning

Let’s start with an example this time and then discuss desiderata



iCaRL: classification

Rebuffi et al, “iCaRL: Incremental Classifier and Representation Learning”, CVPR 2017

iCaRL: incremental classifier and 
representation learning  

• Stores a subset of data in a fixed size 
memory buffer 

• Classifies based on nearest class 
means  

• Consecutively replaces parts of 
memory buffer with new examples



iCaRL: picking exemplars

Rebuffi et al, “iCaRL: Incremental Classifier and Representation Learning”, CVPR 2017

How is our memory buffer filled with 
specific examples? 

• Iteratively: one by one, based on  
“herding” (Welling ICML 2009) 

• Pick exemplars to best approximate 
the overall mean 

• For a size of k exemplars: loop k times



iCaRL: replacing exemplars

Rebuffi et al, “iCaRL: Incremental Classifier and Representation Learning”, CVPR 2017

Our memory buffer is limited, how do we 
later remove samples? 

• Memory buffer is like a prioritized list 

• Later picked exemplars for a task 
“weigh” less  

• Simply cut and repopulate  



iCaRL: training

Rebuffi et al, “iCaRL: Incremental Classifier and Representation Learning”, CVPR 2017

How do we train incrementally? 

• Concatenate dataset with exemplars/
interleave exemplars into training 

• Pick new exemplars (not shown on 
the right) + replace existing 

• Additionally use knowledge distillation



iCaRL & knowledge distillation

Example where classes of CIFAR100 are learned incrementally: exemplars are crucial

Rebuffi et al, “iCaRL: Incremental Classifier and Representation Learning”, CVPR 2017



iCaRL & knowledge distillation

Rebuffi et al, “iCaRL: Incremental Classifier and Representation Learning”, CVPR 2017

Confusion matrices empirically confirm our intuition



Role of extraction algorithm

Javed et al, “Revisiting Distillation and Incremental Classifier Learning”, ACCV 2018

Does the herding selection algorithm outperform random selection?



Role of memory budget

Rebuffi et al, “iCaRL: Incremental Classifier and Representation Learning”, CVPR 2017

How expected are our observations?



Role of memory

Prabu et al, “GDumb: A Simple Approach that Questions our Approach to Continual Learning”, ECCV 2020

Is it really just the data subset that we retain?  
A “dumb learner” comparison suggests that we may get  

similar performance if we just train on the exemplar subset 



Role of memory

 

“While it is an effective method in ANNs, rehearsal is unlikely to be a realistic model of biological 
learning mechanisms, as in this context the actual old information (accurate and complete 
representation of all items ever learned by the organism) is not available. Pseudorehearsal is 
significantly more likely to be a mechanism which could actually be employed by organisms as it 
does not require access to this old information, it just requires a way of approximating it.” 

R. French, “Pseudo-recurrent Connectionist Networks:  
An Approach to the Sensitivity-Plasticity Dilemma”,  
Connection Science 9:4, 1997

Are memory buffers of real examples the solution to continual learning?



(Pseudo-)rehearsal

“Pseudorehearsal is based on the use in the rehearsal process of artificially constructed 
populations of “pseudoitems” instead of the “actual” previously learned items. A pseudoitem 
is constructed by generating a new input vector (setting at random 50% of input elements to 
0 and 50% to 1 as usual), and passing it forward through the network in the standard way. 
Whatever output vector this input generates becomes the associated target output”  

A. Robins, “Catastrophic forgetting, rehearsal and pseudorehearsal”,  
Journal of Neural Computing 7: 123-146, 1995  

A rehearsal alternative



Pseudo-rehearsal

Complementary learning systems theory 
(McClelland et al, Psychological Review 
102:3, 1995), simplified picture here 

• Hippocampus: short-term adaptation & 
rapid learning of novel information 

• Neocortex: slow learning, to consolidate 
& build up overlapping representations  

• Hippocampus “plays back” over time to 
neocortex 

Figure from Parisi et al, “Continual Lifelong Learning with Neural Networks: 
A Review”, Neural Networks 113, 2019



Deep Generative Replay

Shin et al, “Continual Learning with Deep Generative Replay”, NeurIPS 2017

We could train two machine learning models:  
a “generator” (there are many types) + “task solver” -> then alternate training



Deep Generative Replay

Lesort et al, “Generative Models from the perspective of Continual Learning”, IJCNN 2019

We could train two machine learning models:  
a “generator” (there are many types) + “task solver” -> then alternate training



Exemplar/Generative Rehearsal

Shin et al, “Continual Learning with Deep Generative Replay”, NeurIPS 2017

• Exemplar Rehearsal (ER) and 
Generative (Pseudo-)Rehearsal 
(GR) can work equally well if 
we have a powerful generator  

• In contrast, randomly rehearsed 
sampled noise patterns will no 
longer work on complex tasks



A short interlude: generative models



Generative models

• A discriminative model typically learns something like p(y|x)  

• A generative model also learns about the data distribution p(x) & the process by which data 
is created (the generative factors) 

• Having a generative model does not mean we cannot also solve discriminative tasks 
p(x,y) = p(y|x)p(x) 



Autoencoders

https://www.compthree.com/blog/autoencoder/

Let’s take a look at autoencoders


Why? To later see that we don’t necessarily need 
two separate models: 

• Learn a representation, an “encoding” of the data


• An encoder maps to a “code”: “latent variables” 


• A decoder learns to reconstruct the input 



Variational Autoencoders

https://kvfrans.com/content/images/2016/08/vae.jpg

The autoencoders latent embedding/variables may be difficult to grasp if unconstrained


But we could constrain the latent space to follow a specific distribution, e.g. a Variational 
Autoencoder: “Auto-encoding Variational Bayes”, Kingma & Welling, ICLR 2014



Variational Autoencoders

More formally, let us consider:  

• A dataset with variable x  

• Data is generated by a random process involving unobserved random variable z 

• z is generated from some prior distribution  

• A value x is generated from some conditional distribution  

pθ(z)
pθ(x |z)



Variational Autoencoders

More formally, let us consider:  

• A dataset with variable x  

• Data is generated by a random process involving unobserved random variable z 

• z is generated from some prior distribution  

• A value x is generated from some conditional distribution  

But, the parameters and values of latent variables z are not known to us.  

  is intractable 

pθ(z)
pθ(x |z)

pθ(x) = ∫ pθ(x, z)dz



VAE: ELBO derivation

1. The densities of the marginal and joint distribution are related through Bayes rule: 

 pθ(z |x) =
pθ(x, z)
pθ(x)

=
pθ(x |z)pθ(z)

pθ(x)



VAE: ELBO derivation

1. The densities of the marginal and joint distribution are related through Bayes rule: 

 

2. Make use of the logarithm on both sides to write as a sum: 

 

pθ(z |x) =
pθ(x, z)
pθ(x)

=
pθ(x |z)pθ(z)

pθ(x)

log pθ(x) = log pθ(x |z) + log pθ(z) − log pθ(z |x)



VAE: ELBO derivation

1. The densities of the marginal and joint distribution are related through Bayes rule: 

 

2. Make use of the logarithm on both sides to write as a sum: 

 

3. We do not know our real posterior . We will make use of variational inference and 

introduce an approximation : 

pθ(z |x) =
pθ(x, z)
pθ(x)

=
pθ(x |z)pθ(z)

pθ(x)

log pθ(x) = log pθ(x |z) + log pθ(z) − log pθ(z |x)

pθ(z |x)
qϕ(z |x)

log pθ(x) = ∫ qϕ(z |x)[log pθ(x |z) + log pθ(z) − log pθ(z |x)] dz



VAE: ELBO derivation

4. We add and subtract :  

 

qθ(z |x)

log pθ(x) = ∫ qϕ(z |x)[log pθ(x |z) + log pθ(z) − log pθ(z |x) + log qϕ(z |x) − log qϕ(z |x)] dz



VAE: ELBO derivation

4. We add and subtract :  

 

5. We make use of the (reverse) Kullback Leibler divergence between distributions:  

qθ(z |x)

log pθ(x) = ∫ qϕ(z |x)[log pθ(x |z) + log pθ(z) − log pθ(z |x) + log qϕ(z |x) − log qϕ(z |x)] dz

KL(Q | |P) = ∫
∞

∞
Q(x)log

Q(x)
P(x)



VAE: ELBO derivation

4. We add and subtract :  

 

5. We make use of the (reverse) Kullback Leibler divergence between distributions:  

 

and replace the integral with an expectation over samples: 

qθ(z |x)

log pθ(x) = ∫ qϕ(z |x)[log pθ(x |z) + log pθ(z) − log pθ(z |x) + log qϕ(z |x) − log qϕ(z |x)] dz

KL(Q | |P) = ∫
∞

∞
Q(x)log

Q(x)
P(x)

log pθ(x) = KL [qθ(z |x) | |pθ(z |x)] + 𝔼z∼qϕ(z|x) [log pθ(x |z)] − KL [qϕ(z |x) | |pθ(z)]



VAE: ELBO derivation

 

6. We still cannot evaluate the first term on the right hand side, but it is strictly positive 
-> we can optimize the remaining terms 

log pθ(x) = KL [qθ(z |x) | |pθ(z |x)] + 𝔼z∼qϕ(z|x) [log pθ(x |z)] − KL [qϕ(z |x) | |pθ(z)]

log pθ(x) = KL [qθ(z |x) | |pθ(z |x)] + ℒ(θ, ϕ; x)



VAE: ELBO derivation

 

6. We still cannot evaluate the first term on the right hand side, but it is strictly positive 
-> we can optimize the remaining terms 

 

7. We now have a variational lower-bound to p(x) (the “evidence lower bound”, or ELBO) 

log pθ(x) = KL [qθ(z |x) | |pθ(z |x)] + 𝔼z∼qϕ(z|x) [log pθ(x |z)] − KL [qϕ(z |x) | |pθ(z)]

log pθ(x) = KL [qθ(z |x) | |pθ(z |x)] + ℒ(θ, ϕ; x)

log pθ(x) ≥ ℒ(θ, ϕ; x) = 𝔼z∼qϕ(z|x) [log pθ(x |z)] − KL [qϕ(z |x) | |pθ(z)]



VAE: ELBO derivation

 

• The 1. term is the expected reconstruction error given by the log-likelihood (with sampling) 

• The 2. term is a KL divergence encouraging the approximate posterior to be close to a prior 

ℒ(θ, ϕ; x) = 𝔼z∼qϕ(z|x) [log pθ(x |z)] − KL [qϕ(z |x) | |pθ(z)]



VAE: KL divergence

(Reverse) Kl divergence measures the 
amount of information (in nets, or units of 
1/log2 bits) required to “distort” p(z) into q(z) 


If you want to read  more about variational 
inference and the subtleties of KL 
divergence: https://blog.evjang.com/
2016/08/variational-bayes.html

https://blog.evjang.com/2016/08/variational-bayes.html
https://blog.evjang.com/2016/08/variational-bayes.html
https://blog.evjang.com/2016/08/variational-bayes.html


VAE: summary

• The recognition model, a probabilistic encoder,  is a variational approximation to 

the intractable posterior  -> given a datapoint x it produces a distribution over 
possible values of z from which it could have been generated  

• The probabilistic decoder,  produces a distribution over possible values of x given z 

qϕ(z |x)

pθ(z |x)

pθ(x |z)



VAE: reparameterization

Example - approx. posterior as multivariate Gaussian: 

 

• Use reparameterization trick to generate samples 
from  with z as deterministic variable 

• Sample posterior  using  with 

samples  (as one choice of prior)

log qϕ(z |x) = log 𝒩(z; μ, σI)

qϕ(z |x)

z ∼ qϕ(z |x) z = μ + σ ∘ ε

ε ∼ 𝒩(0,I)

https://www.jeremyjordan.me/variational-autoencoders/



VAE: reparameterization

• Use reparameterization to generate samples from  with z as deterministic variable 

• Sample posterior  using  with samples  (as one choice)

qϕ(z |x)

z ∼ qϕ(z |x) z = μ + σ ∘ ε ε ∼ 𝒩(0,I)



Why was this detour important:  
back to continual learning



What have we gained?

Why did we go through all this math? And why is it important for continual learning?

https://www.jeremyjordan.me/variational-autoencoders/ and https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

https://www.jeremyjordan.me/variational-autoencoders/
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf


What have we gained?

https://www.compthree.com/blog/autoencoder/

• We can sample from a trained model: , 

here , and generate (decode) x  

• We also have the approximate posterior that 
we could regularize in continual learning 

z ∼ p(z)
𝒩(0,I)

Why did we go through all this math? And why is it important for continual learning?



Variational Continual Learning

ℒ(θ, ϕ; x) = 𝔼z∼qϕ(z|x) [log pθ(x |z)] − KL [qϕ(z |x) | |pθ(z)]

The “likelihood focused” perspective: 
generative/pseudo rehearsal  

• Generate old tasks’ data and 
concatenate it with new task data 

• Primarily optimize “the likelihood” (left)

See Nguyen et al, “Variational Continual Learning” ICLR 2018 & follow-ups like Farquhar et al “A Unifying Bayesian View of Continual Learning”, NeurIPS workshops 2018



Variational Continual Learning

ℒ(θ, ϕ; x) = 𝔼z∼qϕ(z|x) [log pθ(x |z)] − KL [qϕ(z |x) | |pθ(z)]

The “likelihood focused” perspective: 
generative/pseudo rehearsal  

• Generate old tasks’ data and 
concatenate it with new task data 

• Primarily optimize “the likelihood” (left)

The “prior focused” perspective: 
regularization/distillation 

• Only use new task data 

• Use the posterior of an old task as the 
new task’s prior KL [qt(z) | |qt−1(z)]

See Nguyen et al, “Variational Continual Learning” ICLR 2018 & follow-ups like Farquhar et al “A Unifying Bayesian View of Continual Learning”, NeurIPS workshops 2018



Variational Continual Learning 

Nguyen et al, “Variational Continual Learning” ICLR 2018



Variational Continual Learning

Optionally also store real data subsets (or a core set)

Nguyen et al, “Variational Continual Learning” ICLR 2018



Formally: core sets
What is a core set? 

The term core set is often loosely employed in modern literature to be synonymous to 
exemplars and sub sets of data  

“coresets are small, (weighted) summaries of large data sets such that solutions found on the 
summary itself are provably competitive with solutions found on the full data set” 

 

Note how this is specific to some data, a set of questions/queries, models + loss/cost functions

|𝚌𝚘𝚜𝚝(P, Q) − 𝚌𝚘𝚜𝚝(C, Q) | ≤ ε ⋅ 𝚌𝚘𝚜𝚝(P, Q)

Good introductions are: Bachem et al, “Practical Coreset Constructions for Machine Learning” (2017) or Jubran et al, “Introduction to Coresets: Accurate Coresets” (2019)



Picking a “core set” 

Figure from “A Wholistic View of Deep Neural Networks: Forgotten Lessons 
and the Bridge to Active and Open World Learning”,  Mundt et al 2020

Why could we potentially pick better 
data subsets/exemplars now?  

• Example of a 2-D latent space with 4 
classes/clusters  

• Random or k-means (depending on 
the amount of k) may not mirror the 
distribution well 



Picking a “core set” 

Figure from “A Wholistic View of Deep Neural Networks: Forgotten Lessons 
and the Bridge to Active and Open World Learning”,  Mundt et al 2020

Why could we potentially pick better 
data subsets/exemplars now?  

• If we know our approx. posterior, we 
could sample and pick instances 
that lie close the samples  

• (It’s not actually that easy, for various 
reasons, but the intuition is that we 
are somewhat aware of p(x) now) 



CURL: task specific Gaussians

We could now also use task-specific priors more explicitly

Rao et al, “Continual Unsupervised Representation Learning”, NeurIPS 2019



Have we solved forgetting? Why are we not done?



Combining ideas

Why may we need these multiple perspectives? 
Generators also suffer from forgetting, errors can “snowball” rapidly

Lesort et al, “Generative Models from the perspective of Continual Learning”, IJCNN 2019



Combining ideas

Why may we need these multiple perspectives? 
Fine-tuning alone forgets, regularization is a trade-off and data rehearsal can overfit

Lesort et al, “Generative Models from the perspective of Continual Learning”, IJCNN 2019



In summary: what do we want?

What could our expectations be, what might we desire?



In summary: what do we want?

What could our expectations be, what might we desire? 

• Constant memory budget? 

• Pragmatically? A selection algorithm that outperforms randomly stored data points? 

• A way to shrink the memory buffer to add new tasks, e.g. recursively select exemplars? 

• Ideally? Knowledge of the distribution(s) and a subset with approximation guarantees? 

• A natural formulation to allow (pseudo-)rehearsal, regularization…? 

• …. many more …? 



Combining ideas 

Zhai & Chen et al, “Lifelong GAN: Continual Learning for Conditional Image Generation”, ICCV 2019

• We can (naturally) combine ideas 

• In most of what we have seen so far however, 
the “architecture” has remained static.  

• The assumption that we can continue 
accumulate knowledge because we have 
enough capacity has been prevalent. 



Combining ideas 

Atkinson, “Pseudo-rehearsal: Achieving deep reinforcement learning without catastrophic forgetting”, Neurocomputing 428:7, 2021

Disclaimer  
• There are A LOT of works 

that use rehearsal, which 
are not mentioned here 

• They also come in all 
shapes of supervised/
unsupervised/reinforced 
for different modalities 


