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Recall: How to avoid forgetting? GV/ILLE = Al & hessian.a

Paradigms for Continual Learning
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Hadsell et al, “Embracing Change: Continual
Learning in Deep Neural Networks”, Trends in
Cognitive Sciences 24:12, 2020

We have investigated ways to

e (et ] o) mitigate (catastrophic) forgetting
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Figure 1. (A) Independent and identically distributed learing methods are standard for nonsequential, multitask learning. In this regime, tasks are learned simultaneously
to avoid forgetting and instability. (B) Gradient-based approaches preserve parameters based on their importance to previously learned tasks. (C) Modularity-based
methods define hard boundaries to separate task-specific parameters (often accompanied by shared parameters to allow transfer). (D) Memory-based methods write
experience to memory to avoid forgetting.



Recall: continual experiments GWILIE o coninwaAl @2 hessian.a

But where does our data sequence actually come from?
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Figure 2: Average test set accuracy on all observed tasks in the Permuted MNIST experiment.

Nguyen et al, “Variational Continual Learning” ICLR 2018
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Week 5: Active Learning



S, TECHNISCHE

SIS/

ég@‘/’é UNIVERSITAT
%9+ DARMSTADT

—

Active learning GUVILLE@ o connaAl &2 hessian.a

In a training process on some Initial data
you now want to decide what data to include next.

What do you think: why should we be interested in this question?



Active learning
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Figure from “A Wholistic View of Deep Neural Networks: Forgotten Lessons
and the Bridge to Active and Open World Learning”, Mundt et al 2020
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GWILILE oo continuaiAl - &2 hessian.Al

Selecting upcoming data

Popular in supervised learning:
data Is cheap in comparison to labels

e Also referred to as “query learning”

 Underlying mechanism for queries called
“acquisition function”



Pool based active learning GWWILLE o coninal &2 hessian.al {4 BT
Given: Labeled set £, unlabeled pool U, query (Unlabelled) data pools can be huge
strategy ¢(-), query batch size B
repeat o . .
// learn a model using the current L. * Not every data point is equally informative
§ = train(L) ; e Typically referred to as “pool based”

forb=1to Bdo
// query the most informative instance

X} = arg maxxey ¢(X) ; e Typically accumulate data after selection
// move the labeled query from U to L
L= LU (x;,label(x})) ;
U=U-—-Xx; ;

end

until some stopping criterion ;

active learning

Algorithm 1: Pool-based active learning.

Settles & Craven, "An Analysis of Active Learning Strategies for
Sequence Labeling Tasks”, EMNLP 2008
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What assumptions could me make about the set-up?



(Pool based) Active learning

Many potential assumptions
(non-exhaustive)

e Pool of data entirely available upfront
e Typically accumulate data after selection
e One data element at a time vs. batches

* Queries only allowed to be based on
training of already available data

e Re-train model on new dataset vs.
continued training?

e Oracle: infallible versus noisy

GWILILE oo continuaiAl - &2 hessian.Al
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Figure from “A Wholistic View of Deep Neural Networks: Forgotten Lessons
and the Bridge to Active and Open World Learning”, Mundt et al 2020
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Acquisition functions: what techniques can you think of?
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Active learning perspectives GUWILIE o connuaAl - &2 hessian.Al

Version space reduction

The more formal approach: reduce the set/space of possible hypotheses h : 2 — % by removing
the ones that are inconsistent with the data

Uncertainty & heuristics

The perhaps intuitive approach: use the predictions, or maybe even better, uncertainty in the
predictions for the queries

Core sets & representation learning

The distribution based approach: maximizing distribution coverage instead of reducing the possible
set of hypotheses (version space) explicitly
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Should we use discriminative or generative models?
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Discriminative models could allow for natural ways to assess "novelty” of a new example
-> But caution: overconfidence phenomena (recall lecture 1, topic in upcoming lecture)

Generative models could allow to reason about the data distribution
-> But caution: our parameters only reflect the distribution seen so far! (do we use the pool?)

We will see that the choice also heavily depends on the set-up assumption!

See Zhang & Oles, “A Probability Analysis on the value of Unlabeled Data
for Classification Problems”, ICML 2000
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Version Space
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Version space (Mitchel 1978) GWILIE o contnsAl - &2 hessian.A

 Assume that there exist hypotheses consistent with 0 ‘ 0
the labeled data points h : & — ¥ 0 - °% o

version space: VS(D) = {h € H|cons(h,D)}

e Specific hypotheses: cover positive examples & as
little remaining feature space as possible

e General hypotheses: cover positive examples & as
much of the remaining feature space as possible O =

 Version space: represented as green rectangles O

Figure from https://en.wikipedia.org/wiki/File:Version_space.png in the public domain
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Version space reduction GUIMLLE o conenaAl @2 hessian.A

“Generalization as Search”, Mitchell 1982

We could query such that the version space:
VS(D) = {h € H|cons(h,D)} ,i.e. the set of

= O
consistent hypotheses, quickly gets reduced /
9 @
o //
/ // /7 H

Figure from presentation of “Ensembles of Classifiers” by Evgueni Smirnoy,
slides available at: https://slideplayer.com/slide/10075963/
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A very short excursion: support vector machines
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Support vector machines (SVM) GUVALILE o contnuaiAl - @2 hessian.A

Example: support vector machine (SVM) X2 O

e |n principle, not completely different from
logistic regression, neural networks etc.

e Choose hyperplane that divides data
points into the two classes (1, -1)

X4

https://towardsdatascience.com/support-vector-machine-vs-
logistic-regression-94cc2975433f



Example: support vector machine (SVM)

 Any hyperplane can be written as a set of
points x satisfying:

wlix—5b=0

where w Is the normal vector

o Margin:wlx—b=1&wlx—b=-1

Tong & Koller, “Support Vector Machine Active Learning with
Applications to Text Classification”, JMLR 2001




Example: support vector machine (SVM)

Hyperplane chosen to maximize margin to
closest instances: the support vectors

e Rewritten y(w'x,—b)=0>1,VI <i<n
(additionally, no points fall on the boundary)

e Optimization problem: minimize ||w|| subject
to: y(w'x,—b)=0>1,V1 <i<n

4

Figure from https://en.wikipedia.org/wiki/File:SVM_margin.png
shared under CC 4.0 license
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Support vector machines (SVM) GUVALILE o contnuaiAl - @2 hessian.A

Example: support vector machine (SVM)

: : A Class A 4 Class A
 Data is not always linearly separable lass B Clacs B
e We can project data to a (higher : IV Y 2

. n i A )
dimensional) feature space through A **:* A *:*:*
| A
kernel functions A X *at AaA
| AApaA AAA, B AT
e Example: polar coordinates
L Axis L XAds

Figure from https://www.datacamp.com/tutorial/svm-classification-scikit-learn-python
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Back to version spaces
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Version space: SVM GUIMLLE o conenaAl @2 hessian.A

L s

An example: support vector machine (SVM)

Version space is set of hyperplanes
(or could be redefined through vectors W)

Figure from presentation of “Ensembles of Classifiers” by Evgueni Smirnoy,
slides available at: https://slideplayer.com/slide/10075963/



Version space: SVM

Active learning with SVMs

 Rapidly reduce version space

e Intuitively: choose successive queries that

halve the version space

e Various approximations: Is version space
symmetric? Estimates of the size? etc.

Test Set Accuracy

Labeled Training Set Size

Tong & Koller, “Support Vector Machine Active Learning with
Applications to Text Classification”, JMLR 2001
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(Uncertainty &) Heuristics
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Reducing the set of consistent hypotheses does not regard the evaluation metric.

We could also take a look at the machine learning loss and include points that would:
e most reduce the expected error
e most change the current model



An alternative to version space GWILLE « Al

Reducing the set of consistent hypotheses does not regard the evaluation metric.

We could also take a look at the machine learning loss and include points that would:
e most reduce the expected error
e most change the current model

“First-order Markov active learning aims to select a query x*, such that when the query is given

label y* and added to the training set, the learner trained on the resulting set D+(x*,y*) has

lower error than any other x”

Roy & McCallum, “Toward Optimal Active Learning through Monte Carlo Estimation of Error Reduction”, ICML 2001)
(See also Cohn et al, “Active learning with statistical models”, JAIR 4, 1996)
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Version spaces & expected error reduction can be complicated (& computationally heavy).
Simple heuristics are thus still popular, especially in deep learning

1. Create an 1nitial classifier

2. While teacher 1s willing to label examples

(a) Apply the current classifier to each unlabeled example

(b) Find the b examples for which the classifier is least certain of class membership
(¢) Have the teacher label the subsample of b examples

(d) Train a new classifier on all labeled examples

Figure 1. An algorithm for uncertainty sampling with a single classifier.

Lewis & Gale, “A Sequential Algorithm for Training Text Classifiers”, ACM-SIGIR
conference on research and development in information retrieval 1994
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Instead of pure output confidence, we could resort to more information theoretic approaches

Example: maximize expected information gain by querying examples with largest entropy
(as a measure of disorder, related to information gain)

H(p) = — ZP;‘ log,(p))

Example p(y|X):
* H[1.0,0.0,0.0,0.0,0.0] =0
 H[0.2,0.2,0.2,0.2,0.2] = 1

See McKay, “Information-Based Objective Functions for Active Data Selection”, Neural Computation 4, 1992 based on prior works by Shannon 1948



Best versus second best GWILLE o oAl &2 hessian Al

Confidence & entropy can be poor estimates
when multiple classes are considered

Discrete entropy = 1.34 Discrete entropy = 1.69
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Joshi et al, “Multi-Class Active Learning for Image Classification”, CVPR 2009




Best versus second best GWILLE o oAl &2 hessian Al

Indicates
Confidence & entropy can be poor estimates 1,2 . 1.4 23 e
when multiple classes are considered 3,4
2,4
Discrete entropy = 1.34 Discrete entropy = 1.69 .
0.45———————————————— _
0.4}
£ 035! £ "
E 0.3| E (4 "7
S 025 = :
- = 2,4
3 0.2 g
go.15- g 3,4
= - - @ Indicates 1,3 qum Classes
005/ ? unlabeled 2,3 14 1,2 tslf.p arla tequ Y
, is classifier
123456780910 123456780910 * example
Class Class

Joshi et al, “Multi-Class Active Learning for Image Classification”, CVPR 2009



Best versus second best
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Left to right: Pendigits, Letter, USPS datasets
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Exploration vs. exploitation?

When the task isn’t binary classification, we
also need to care about exploration versus
exploitation

How much do we explore very novel classes
and how much do we extend knowledge of
classes we have already seen?

Our measures often overemphasize “novelty”
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Exploration - seeing new classes
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Joshi et al, “Multi-Class Active Learning for Image Classification”, CVPR 2009
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Can we correct entropy alone? GW/LLE o conwal &2 hessiana

We could weigh entropy with some measure of data similarity, to get “information density”:
(Settles & Craven, An Analysis of Active Learning Strategies for Sequence Labeling Tasks, EMNLP 2008)

p

: : 1 .
ID) = = ), p(1x:6) logp(|x;0) - — | ) simx, x)
y

Uu

Where beta is a weighting & the similarity over all unlabelled examples U could be a distance:

7. 3w

: wy — - -
N THIE



Query by committee GUATLIE o contarar

We could also maximize the information gain between two/multiple models: ensembles
Could also be interpreted as reducing the version space across models or gauging uncertainty

Query by a committee of two
Repeat the following until n queries have been accepted

1. Draw an unlabeled input z € X at random from D.

2. Select two hypotheses hy, hy from the posterior distribution. In other words,

pick two hypotheses that are consistent with the labeled examples seen so
far.

3. If hi(z) # ha(z) then query the teacher for the label of z, and add it to
the training set.

Seung et al, “Query by Committee”, COLT 1992, and Freund, Seung et al,
“Information, Prediction, and Query by Committee”, NeurlPS 1992



Monte Carlo Dropout

Monte Carlo Dropout (Gal et al, “Dropout
as a Bayesian Approximation”, ICML 2016)

e Make use of dropout: randomly
turning off units in a model

 Bayesian interpretation: Bernoull
distribution on the parameters

e Do stochastic forward passes to
assess variation in predictions
(model uncertainty)
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(a) Standard Neural Net

(b) After applying dropout.

Srivastava et al, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 15, 2014
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Monte Carlo Dropout

100
MCD could be useful as an ” o (T AL
approximation to using multiple )
model based ensembles )
92
90
The acquisition function could still be .
entropy, standard deviation in 5
output confidence etc. " S
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Gal et al, “Deep Bayesian Active Learning with Image Data”, ICML 2017



Limits of uncertainty sampling GUILIE o contnuaAl &2 hessian.Al

15 = truth
—  prediction

Why aren’t these approaches a lot better?

MC-Dropout

Deep Ensembles

15 = ftruth
- prediction
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Figure from https://www.inovex.de/de/blog/uncertainty-quantification-deep-learning/
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Figure 2: An illustration of when uncertainty sampling
can be a poor strategy for classification. Shaded poly-
gons represent labeled instances (L), and circles repre-
sent unlabeled instances (/). Since A is on the decision
boundary, 1t will be queried as the most uncertain. How-
ever, querying B 1s likely to result in more information
about the data as a whole.

Settles & Craven, "An Analysis of Active Learning Strategies for
Sequence Labeling Tasks”, EMNLP 2008
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Core Sets & Representation Learning
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Representations & core sets  GUW/ILLE oAl &2 hessiana

What if we allow to use and even train on the unlabelled pool: “cover the distribution”?
Assumption: a “teacher” information source is allowed, like a generative model

We wouldn’t necessarily get a lot of advantage of generative models in active learning, unless
we also train on the unlabelled pool: In close relation to semi-supervised learning

We could then also make use of core sets, as discussed for rehearsal in the last lecture



Representations & core sets

data samples Xi,..., Xn

Initial clustering
(section 3.1)

We could now try to:

Estimating p(ylk)
e Pre-cluster our unlabelled data pool (section 3.2)

Calculating p(ylx)
eq. (5)

e Compute core sets of the unlabelled data pool

e | earn a generative model
. Selecting and labeling an
& representations on the unlabelled data pool unlabeled sample, eq. (30)

Cluster adjustment
(section 3.4)

H.T. Nguyen et al, “Active Learning
Using Pre-clustering”, ICML 2004




Representations & core sets  GWILLE « conwal & hessiana

Example: generative adversarial
active learning

Learner Learner

e As one example of a family of
Trainin Trainin
approaches of how to use a ° , / N\ g,. /[

generator: “query-synthesizing” JJ Pool JJ OAN
e Let generative model interpolate/ way\ f /. z, ! way\ | S
synthesize “novel” data to label +
(a) Pool-based (b) GAAL

learn actively
e \arious follow-ups

Zhu & Bento, “Generative Adversarial Active Learning”, NeurlPS
workshop on Teaching Machines, Robots & Humans, 2017
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Example: variational adversarial
active learning

Task learner

e Optimize on all data D |
p EOFaClei] unlabeled?
e Learn a discriminator on latent P e ¢ ﬁ PiScriminator
P labeled?

space to distinguish labelled/

unlabelled \LVAE/_\DV \
e Adversarial: try to fool into L

latent space

believing everything is labelled

e Query according to unlabelled/ unlabeled set
labelled confidence

Sinha et al, “Variational Adversarial Active Learning”, ICCV 2019



Representations & core sets
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Sinha et al, “Variational Adversarial Active Learning”, ICCV 2019
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Summary: Let’s keep assumptions & trade-offs in mind
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Version space reduction (Hypotheses)

The more formal approach: reduce the set/space of possible hypotheses h : 2 — % by removing
the ones that are inconsistent with the data

Uncertainty & heuristics (Novelty)

The perhaps intuitive approach: use the predictions, or maybe even better, uncertainty in the
predictions for the queries

Core sets & representation learning - accessing the entire pool (Diversity)

The distribution based approach: maximizing distribution coverage instead of reducing the possible
set of hypotheses (version space) explicitly



In summary

Techniques
e \ersion space reduction

e Minimum confidence
e Maximum entropy
e Best versus second best

e Model “uncertainty” (output variability)
e Ensembles/query by committee

e Representation learning on the pool
e Core sets

%% TECHNISCHE

(NALY 7

GWILLE ool & hessianar (G By

s

—_—

& (some of) their assumptions
e Set of hypotheses is clear

e No overconfidence phenomenon and out-of-
distribution/task data

e Accurate uncertainty everywhere

e Training of multiple models

e Upfront training on entire pool
(access + computational expense)



More general assumptions GULIE oo connAl &2 hessian.Al

Recall our assumptions:

Noisy oracle

e QOracle is infallible: 20
the teacher/labeler does not
make mistakes!

S
e
=
* Data is accumulated: S
1’ . . . yy =
no “continual active learning élg
15
-.- VAAL (£ = 10%) + VAAL (&€ = 20%) VAAL (&€ = 30%)
e Pool belongs to task: 12 /I Random (6 10% 4l Fandom (=20% _ 2p Random ¢30%)
we will cover this in our lecture on 10 15 20 25 30 35 40

" : ' % of Labeled Data
learning and the unknown

Sinha et al, “Variational Adversarial Active Learning”, ICCV 2019



