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Week 6: Dynamic/Modular Neural Architectures
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Recall: How to avoid forgetting? GWILLE o contnaAl - &2 hessian.Al

Paradigms for Continual Learning Hadsell et al, “Embracing Change: Continual
Learning in Deep Neural Networks”, Trends in
Cognitive Sciences 24:12, 2020

(A) (B) O = importance
We have investigated ways to

mitigate (catastrophic) forgetting
but haven’t talked about (C) yet

Disclaimer: we will focus primarily
on neural networks today

(C) (D)

Q00 @O0 000 % 000 B o000 B 000
@00 @0 0/elo 000 00O % 0D
@00 olelo elelo ~ 000 /§-000 &-000
Q000 0000 0000 0000 00DO ODDO
000 0000 0000 0000 Q000 § 0000

Figure 1. (A) Independent and identically distributed learning methods are standard for nonsequential, multitask learning. In this regime, tasks are learned simultaneously
to avoid forgetting and instability. (B) Gradient-based approaches preserve parameters based on their importance to previously leamed tasks. (C) Modularity-based
methods define hard boundaries to separate task-specific parameters (often accompanied by shared parameters to allow transfer). (D) Memory-based methods write

experience to memory to avoid forgetting.
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Why are we talking about dynamic/modular architectures at this point?

“Catastrophic forgetting is a direct consequence of the overlap of distributed
representations and can be reduced by reducing this overlap.”

Robert French, “Using Semi-Distributed Representations to Overcome
Catastrophic Forgetting in Connectionist Networks”, AAAI 1993



§“‘§’?‘ TECHNISCHE
&7 UNIVERSITAT
DARMSTADT

S /A
£
My

Why dynamic architectures? GWILILE o connwaAl - 2 hessian.Al

Why are we talking about dynamic/modular architectures at this point?

“Catastrophic forgetting is a direct consequence of the overlap of distributed
representations and can be reduced by reducing this overlap.”

Robert French, “Using Semi-Distributed Representations to Overcome
Catastrophic Forgetting in Connectionist Networks”, AAAI 1993

"Very local representations will not exhibit catastrophic forgetting because there is little
Interaction among representations. However, a look-up table lacks the all-important ability to
generalize. The moral of the story is that you can’t have it both ways.”
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But it's not only about catastrophic forgetting: it's also finding suitable capacity
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Optimal capacity (polynomial degree)
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Number of training examples

Deep Learning, Goodfellow, Bengio, Courville, MIT Press 2016,
Machine Learning Basics chapter, page 114.
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Two common ways to think about modular architectures

-> “Implicit”: over-parametrized and try to create specific sub-modules

“Explicit”; add actual parameters/capacity over time



%5 TECHNISCHE
gg@-/e UNIVERSITAT
%9y DARMSTADT

—_—

The implicit perspective GUILIE o contniaAl &2 hessian.Al

The “implicit” perspective
e Recall the regularization perspective: identify important parameters, constrain those
 \We could assume over-parametrization + try to “sparsify” our parameters

e \We create “sub-models” that are primarily responsible for a specific task
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Example: activation sharpening (semi-distributed representations)

e |ncrease activation of some k nodes, decrease that of others

e Suggestion, overlap as a sum of the smaller activations, the "shared” activation, as a
measure of interference

 Four hidden unit example: (0.2, 0.1, 0.9, 0.1) & (0.2, 0.0, 1.0, 0.2)
Activation overlap: (0.2 +0.0+0.9+0.1)/4=0.3

A non interfering example: (1, 0, 0, 0) & (0, 0O, 1, 0) have 0 overlap

Robert French, “Using Semi-Distributed Representations to Overcome Catastrophic Forgetting in Connectionist Networks”, AAAI 1993
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Example: activation sharpening (semi-distributed representations)

e |ncrease activation of some k nodes, decrease that of others
e Suggestion, overlap as a sum of the smaller activations, the "shared” activation

e Perform a forward-activation pass from the input layer to the hidden
layer. Record the activations in the hidden layer;

e “Sharpen” the activations of k nodes;

e Using the difference between the old activation and the sharpened
activation on each node as "error", backpropagate this error to the
input layer, modifying the weights between the input layer and the
hidden layer appropriately;

Do a full forward pass from the input layer to the output layer.
Backpropagate as usual from the output layer to the input layer;
Repeat.

Robert French, “Using Semi-Distributed Representations to Overcome Catastrophic Forgetting in Connectionist Networks”, AAAI 1993
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Effect of Sharpening on Hidden-Layer
Activation Profiles
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Robert French, “Using Semi-Distributed Representations to Overcome Catastrophic Forgetting in Connectionist Networks”, AAAI 1993
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A newer example:
Pathways/PathNets

1T A\ OO TINGY
KKK I/}p‘);))
/f

e Start with an over-
parametrized model

o -

e Constrain a task to use a
subset of parameters

 Enforce a small/fixed number
of active modules/“paths” 1

NLEOHO0O

Score

OOOOOO0O

8e7 steps 16e7 steps

|
N

Fernando et al, “PathNet: Evolution Channels Gradient Descent in Super Neural Networks”, arXiv:1701.08734, 2017
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A different newer example: Environment s

Variational Autoencoder with t T
Shared Embeddings (VASE) élk’j g / s 7
Sample—"". \ il i
e Keep (over-parametrized) X /* P . ;'.
encoder/decoder fixed in terms Generative factor T
of number of parameters < e
* Progressively increase latent ‘ S . 2
space capacity in continual s gy (-1xo) [ 108 Po (X | 2°,5)] + 7|KL(gy (2°[x%)||p(2))— C |

N————

learning

Reconstruction error Representation capacity Target

Achille et al, “Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies”, NeurlPS 2018
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There are many ways to go about task specific subsets of parameters/modules:

e Activation overlap

h',
e Parameter sparsity S .:‘ t .:‘
h;

(e.g. through L1 regularization)

e’l

e “Attention” masks

. o etC. Embedding

h';
/ [-1

Serra et al,"Overcoming Catastrophic Forgetting with Hard Attention to the Task”, ICML 2018

Surely interesting & useful, but what if we don’t want to start large/over-parametrized?
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Two common ways to think about modular architectures

“Implicit”: over-parametrized and try to create specific sub-modules

-> “Explicit”: add actual parameters/capacity over time



Recall lecture 2: transfer
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“How transferable are features in deep neural networks”, Yosinski et al, NeurlPS 2014
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Recall lecture 2 on transfer learning:
some features are more transferable
than others

The “"experts” approach:

 \We could share parts + add
individual experts on top
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The “experts” approach:

 \We could share parts + add
iIndividual experts on top

| Hadx3
3 pedx3

+ A solid & somewhat “safe” approach

i S T . +- "Backbone” is static & experts don't
® 4 — I share all knowledge (is this a + or -?)

expert to use

G, - Can be tough to determine which

Input :»[ Features Extraction ]

Figure 1. The architecture of our Expert Gate system.

Aljundi et al, “Expert Gate: Lifelong Learning with a Network of Experts”, CVPR 2017



<74 TECHNISCHE
SIN=//A

5@/~ UNIVERSITAT
=Y

The explicit perspective GULIE o conruaial @2 hessianal () by

The plasticity from a different angle - inspiration from

"After two decades of research, the neurosciences have come a long way from accepting that
neural stem/progenitor cells generate new neurons in the adult mammalian hippocampus to
unraveling the functional role of adult-born neurons in cognition and emotional control.

The finding that new neurons are born and become integrated into a mature circuitry
throughout life has challenged and subsequently reshaped our understanding of

neural plasticity in the adult mammalian brain.”

(Quote: Vadodaria & Jessberger, “Functional nheurogenesis in the adult hippocampus: then and now”, frontiers in neuroscience
8, 2014, see also C. Gross, “Neurogenesis in the adult brain: death of a dogma”, Nature Reviews Neuroscience, 2000)
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Example: Dynamic Node Creation

Sqd.

Error

e Small initial amount of parameters

First crucial question: WWhen should we add?

e Assumes decaying exponential for error c

 Add node when error plateaus

Trials

T. Ash, “Dynamic Node Creation in Backpropagation Networks”,
Connection Science 1:4, 1989



The explicit perspective

Second crucial question: when do we stop?

Sqd.

Error

e Calculate the ratio over the drop in average
(squared) error (a) across some window (w)

of time ({)
e Stop when relative improvement becomes too
Cdy— 4y,
small: < A;
27

0

e Stop when acceptable performance/cutoff (C)

Trials

is reached: a, < C,

T. Ash, “Dynamic Node Creation in Backpropagation Networks”,
Connection Science 1:4, 1989
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Has been empirically investigated on some “simpler” test problems

TABLE 2. TEST PROBLEMS ALONG WITH EMPIRICAL UPPER BOUNDS ON THE
NUMBER OF HIDDEN LAYER UNITS

Name Input Output Known Solution (# of
hidden units)
Encoder = Problem N bit binary vector with - Same as input | - logy N
(ENC) 1 bit on
Symmetry (SYM) N bit binary vector 1 if symmetric, O if 2
asymmetric
Parity (PAR) N bit binary vector lif#of 'sisodd, O N
otherwise
Binary Addition Two N bit binary vectors N bit result and 1 None known for one
(ADD) carry bit hidden layer

T. Ash, “Dynamic Node Creation in Backpropagation Networks”, Connection Science 1:4, 1989
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Squared error (y axis) for the ADD3 test problem
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T. Ash, “Dynamic Node Creation in Backpropagation Networks”, Connection Science 1:4, 1989



The explicit perspective

Technically, third crucial question (not taken
into account here): how/what do we add??

e Do we add one parameter or many?

A neural network layer?

e Do we add a whole new function?

e A different output head if our tasks change”

Sqd.

Error

Trials

T. Ash, “Dynamic Node Creation in Backpropagation Networks”,
Connection Science 1:4, 1989
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A newer example: progressive networks

o Start with a single “column” of parameters
e Add “column” for new task + freeze old column

e New columns receive lateral connections from
old ones

Avoid forgetting & allow transfer where possible

A a |4 A
: Y
hgl) th) th)
¥ N L I -
hgl) th) h§3)
o f/'
input

Rusu et al, “Progressive Neural Networks”, arXiv:1606.04671, 2016
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We can evaluate and analyze similarly to what we have already
seen Iin lecture 2, when we talked about knowledge transfer

source task

target task

]

random
imput input input input input input - - =

]
-
-

(1) Baseline 1 (2) Baseline 2 (3) Baseline 3 (4) Baseline 4 (5) Progressive Net (6) Progressive Net fl— -
2 columns 3 columns rozen

Rusu et al, “Progressive Neural Networks”, arXiv:1606.04671, 2016
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We can evaluate and analyze similarly to what we have already
seen Iin lecture 2, when we talked about knowledge transfer

S < : .
(a) 5 IS > & A > & . (b) Pong to White Pong to H-flip
4 S > S
S L K o & » & $ s & § Prog2
© Q & Q < Ny Q < o Q 9 Q
f ] ] ] ]

Y

s 1 R - - : |
wn htel ',k:BaseB ;

o: M m = J. !/

!
onvt [ — m ] ot j:
o AFS 20
lowest transfer score R highest transfer score 0 steps 4e7 0 steps 4e7
Insensitive sensitive

Rusu et al, “Progressive Neural Networks”, arXiv:1606.04671, 2016
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Aren’t some of these solutions ‘“obvious’”?
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Aren’t some of these solutions ‘“obvious’”?

“While many of the individual ingredients used in progressive nets can be found in the
literature, their combination and use in solving complex sequences of tasks is novel”

(Rusu et al, Progressive Neural Networks, 2017)
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Aren’t some of these solutions ‘“obvious’”?

Recall qguestions: what to start with, when to add/remove -
what, how, how much; when to stop ...?

Il Developing concrete algorithms & applications is challenging !!
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Various combinations with partial re-training with expansion

EWC Progressive Nets DEN

t-1 t t-1 t t-1 t

[ SISO X 7S
(eXeYo) (eXe) (exeXo)l®

N T NS S NS

(a) Retraining w/o expansion (b) No-retraining w/ expansion (c¢) Partial retraining w/ expansion

Yoon et al, “Lifelong Learning with Dynamically Expandable Networks”, ICLR 2018
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Algorithm 1 Incremental Learning of a Dynamically Expandable Network

Three key ste PS. Input: Dataset D = (D1, ...,Dr), Thresholds 7, o
Output: W7
fort=1,...,T do
if t = 1 then
. . . . 1 .
1. Selective retra|n|ng els’gram the network weights W~ using Eq.@
W' = SelectiveRetraining(W*'™ ') {Selectively retrain the previous network using Algorithm 2 }
if £; > 7 then

2 D : : W' = DynamicEzpansion(W"*) {Expand the network capacity using Algorithm 3}
: ynamic expansion Wt = Split(W*) {Split and duplicate the units using Algorithm 4 }

3. Split & duplicate units

Perhaps sidelines the
question of how much to
add by removing again

Yoon et al, “Lifelong Learning with Dynamically Expandable Networks”, ICLR 2018
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Why is the efficacy of these approaches hard to interpret?
Beyond measuring (catastrophic) forgetting
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But it's not only about catastrophic forgetting: it's also finding suitable capacity

20

o—
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-

Optimal capacity (polynomial degree)

0 1 2 3 1

0 10 10° 10° 10 10°

Number of training examples

Deep Learning, Goodfellow, Bengio, Courville, MIT Press 2016,
Machine Learning Basics chapter, page 114.
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The active learning perspective

Incremental architecture approach:

For every query, evaluate three
architecture choices

1. The present architecture
2. One with expanded width
3. One that also adds layers

Greedily select the best candidate in
terms of a validation dataset

Input

Initial block

Block 1
Stride = 2

% Block 2
= oo

Number of “blocks"

Block Nyyoye

A Stack 1

Block 1
Stride = 2

33 Block 2

Conv 3X3
Conv 3X3

Add

Stack Nstacks

= eee

Block Ny

Global pooling

Fully connected
softmax

i=1 =2 =3 =4 i=5

Geifman & El-Yaniv

, 'Deep Active Learning with a Neural Architecture Search”, NeurlPS 2019

SHOBJS, JO JoqUINN
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What kind of architecture do you
think is depicted in the 3 curves?

0 10000 20000 30000 40000 50000
Labeled points

(a) Softmax response

Geifman & El-Yaniv, “Deep Active Learning with a Neural Architecture Search”, NeurlPS 2019
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What kind of architecture do you
think is depicted in the 3 curves?

1. Black line: incremental architecture
2. Blue line: fixed Resnet (large)

3. Red line: fixed small architecture
(start of the incremental one) 0 10000 20000 30900, 40000 50000

(a) Softmax response

Geifman & El-Yaniv, “Deep Active Learning with a Neural Architecture Search”, NeurlPS 2019
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Consistent for different active learning acquisition functions

o) 10000 20000 30000 40000 50000 . 0 10000 20000 30000 40000 50000 ' 0 10000 20000 30000 40000 50000
Labeled points Labeled points Labeled points
(a) Softmax response (b) MC-dropout (¢) Coreset

Figure 2: Active learning curves for CIFAR-10 dataset using various query functions, (a) softmax response, (b)
MC-dopout, (c) coreset. In black (solid) — Active-iINAS (ours), blue (dashed) — Resnet-18 fixed architecture,
and red (dashed) — A(B., 1, 2) fixed.

Geifman & El-Yaniv, “Deep Active Learning with a Neural Architecture Search”, NeurlPS 2019
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As always: it’s likely even more complicated
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(Opinion?) We don't have a solid idea of representation overlap in deep learning yet

Vision Transformers ResNets Error scaling
1.00 - 1.0 ; R i .
NG A9 ." ) 10_1 7 Q\
> ] \

0.96 - 0 & l “\
- —~ 0.9 - — \\\ h\
o ... o0 ' O o © 8 o N
4 % l. Y4 5 N N
wn wn \\ Q\
ﬁ 0.92 1 ’ .‘ ﬁ 81 \\\ \
- ~}e - : . ®
é[) ¢ o & <L[) 0.8 - O ResNet26 3 0 g Flt 3 ~ N_a \\\\

0.88 - ¢ .~ O ResNet50 o ©Co0 © 1072 L avg RSN

| ® ViT-xS_16 o o o  ResNetl0l . Q 0 . S
e VIT-S 16 % ® S ResNet152 P @ ] o ResNet:a=-1.14 \\’
ViT-B_16 Oe ResNet200 " O | @ ViT:oa=-0.98
084 I | I I 07 T T 1 L | r r T T —r—rr
0.84 0.88 0.92 0.96 1.00 0.7 0.8 0.9 1.0 10’ 108
Acc (Task A) Acc (Task A) Model parameters (N)
ViT-xS R26 ViT-S R50 R101 R152 R200 ViT-B
5.7m 14.0m 19.6m 23.5m 42.5m 58.1m 62.6m 86.7m

Ramasesh et al, “Effect of Model and Pretraining Scale on Catastrophic Forgetting in Neural Networks”, ICLR 2022
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Some models may be more suitable than others: orthogonal representations?

Cross-class overlap

Cross-task overlap vs. scale

1.0 A
e = = e e e e
0.9 - Ko mme e
0.8 -
0.7 X ResNet (scratch)
O ResNet (pre-trained)
0.6 M= ===—o____ ® \ViT
0.5" ~~--O.\\\\
O~00
0.4‘ .\
_.
0.3 1 ’ L L | T T T T T T
10° 107 108

Model parameters

Best average error (€ayq)

(-
-

(-
-
I
-
1

I
N

Error scaling

O ResNet: a=-1.14 .
® Vil:a=-0.98

107 108
Model parameters (N)

Ramasesh et al, “Effect of Model and Pretraining Scale on Catastrophic Forgetting in Neural Networks”, ICLR 2022
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There are other ways to think about suitable
architecture configurations



Meta-learning @W&&@ oo ContinualAl -~ @2 hessian.Al

The meta-learning perspective: learning to learn

Sample architecture A

* Learning to chose a suitable model variant with probability p

[ )

Trains a child network

| earning to grow

The controller (RNN) B e
* Architecture search | A fo oct accuracy K

e | earning loss functions t J

e [ earning optimizers Cmp'hgyd..";pd

o Figure 1: An overview of Neural Architecture Search.

Zopf & Le, “Neural Architecture Search with
Reinforcement Learning”, ICLR 2017
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It’s half-time: recap & outlook
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What have we seen so far? GWILIE o cortnaAl &2 hessian.Al

. Intro: motivation and rough course overview
. Transfer and its forms: from source to target tasks
. (Catastrophic) forgetting 1: optimization, regularization, distillation

1
2
3
4. (Catastrophic) forgetting 2: rehearsal & pseudo-rehearsal
5. Active learning: querying what data comes next

0

. Dynamic/modular architectures: more than just “forgetting 3"

We should have a good initial overview of ways of thinking & techniques now



Recap

Paradigms for Continual Learning Hadsell et al, “Embracing Change: Continual
Learning in Deep Neural Networks”, Trends in

Cognitive Sciences 24:12, 2020

(A) (B) O = importance
coe
00 o o  eoca 929 We have covered these
® 00
@00 000 @00

paradigms & a little more

What's still to come?

=
3
()
&'
7]
=
I

Task 3

e Learning curricula

(C)

olold  SeE  alals 208 e Large model intricacies
@00 olelo elelo ~ 000 .

Q000 0000 00O 0000 e Evaluation

0000 0000 0000 0000

e Open world learning

e Role of soft’/hardware

Figure 1. (A) Independent and identically distributed learing methods are standard for nonsequential, multitask learning. In this regime, tasks are learned simultaneously E F t -

to avoid forgetting and instability. (B) Gradient-based approaches preserve parameters based on their importance to previously learned tasks. (C) Modularity-based ® ( Ve n m O re) ro n I e rs
methods define hard boundaries to separate task-specific parameters (often accompanied by shared parameters to allow transfer). (D) Memory-based methods write

experience to memory to avoid forgetting.



